Preferred Language
Articles
/
bsj-1081
Effect of Partial Coherence illuminated bar on evaluation technique of diffraction image
...Show More Authors

In this work, we are obviously interested in a general solution for the calculation of the image of a single bar in partially coherent illumination. The solution is based on the theory of Hopkins for the formation of images in optical instruments in which it was shown that for all practical cases, the illumination of the object may be considered as due to a self – luminous source placed at the exit pupil of the condenser , and the diffraction integral describing the intensity distribution in the image of a single bar – as an object with half – width (U0 = 8 ) and circular aperture geometry is viewed , which by suitable choice of the coherence parameters (S=0.25,1.0.4.0) can be fitted to the observed distribution in various types of microscope , the aberration were restricted to defocusing and coma upto third – order , the method of integration was Gauss quadrature: The necessary set of integration depends , of course , on the amount of present aberrations and had to be chosen (20) points of Gauss which decrease the computation time to few seconds: The aberration free systems corresponding to the paraxial receiving plane (W20= 0.0) is especially interesting as it predicts diffraction pattern shape. The influence of defocusing is very pronounced and relatively distorts the object , the influence of the off – axis aberration (third – order coma ), in which it was shown that for the high peaks in the images are most noticeable in the region of almost perfect coherence (S=0.25). As (S) is increased from (0.25) to (1.0) there is a pronounced redistribution of intensity, with peaks moving from one side of the image to the other. Calculations were also performed for systems having spherical aberration, but the results are qualitatively similar to an aberration – free defocused system and are omitted, so we will not present any numerical results. A computer program was written in FORTRAN 77 which solved the modified intensity distribution of Hopkins for(U´) dimensionless distance. The advantage of that additional work on this class of problems to investigate the development of more efficient numerical methods, also the reduction in computation time to few seconds for data runs for individual curves of intensity.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Nov 16 2020
Journal Name
The Imaging Science Journal
Single image dehazing by dark channel prior and luminance adjustment
...Show More Authors

View Publication
Scopus (8)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Digital Image Watermarking Using Arnold Scrambling and Berkeley Wavelet Transform
...Show More Authors

Embedding an identifying data into digital media such as video, audio or image is known as digital watermarking. In this paper, a non-blind watermarking algorithm based on Berkeley Wavelet Transform is proposed. Firstly, the embedded image is scrambled by using Arnold transform for higher security, and then the embedding process is applied in transform domain of the host image. The experimental results show that this algorithm is invisible and has good robustness for some common image processing operations.

View Publication Preview PDF
Publication Date
Fri Aug 16 2024
Journal Name
International Journal Of Mathematics And Computer Science
Artificial Intelligence Techniques to Identify Individuals through Palm Image Recognition
...Show More Authors

Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Journal Of The College Of Education For Women
Minimum Spanning Tree Algorithm for Skin Cancer Image Object Detection
...Show More Authors

This paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that

... Show More
View Publication Preview PDF
Publication Date
Wed Aug 11 2021
Journal Name
International Journal Of Interactive Mobile Technologies (ijim)
Image Denoising Using Multiwavelet Transform with Different Filters and Rules
...Show More Authors

<p class="0abstract">Image denoising is a technique for removing unwanted signals called the noise, which coupling with the original signal when transmitting them; to remove the noise from the original signal, many denoising methods are used. In this paper, the Multiwavelet Transform (MWT) is used to denoise the corrupted image by Choosing the HH coefficient for processing based on two different filters Tri-State Median filter and Switching Median filter. With each filter, various rules are used, such as Normal Shrink, Sure Shrink, Visu Shrink, and Bivariate Shrink. The proposed algorithm is applied Salt&amp; pepper noise with different levels for grayscale test images. The quality of the denoised image is evaluated by usi

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Oct 10 2016
Journal Name
Iraqi Journal Of Science
Satellite image classification using KL-transformation and modified vector quantization
...Show More Authors

In this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water

... Show More
Publication Date
Mon Jan 01 2024
Journal Name
International Journal Of Mathematics And Computer Science
Artificial Intelligence Techniques to Identify Individuals through Palm Image Recognition
...Show More Authors

Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le

... Show More
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Jul 01 2019
Journal Name
2019 International Joint Conference On Neural Networks (ijcnn)
A Fast Feature Extraction Algorithm for Image and Video Processing
...Show More Authors

View Publication
Scopus (40)
Crossref (38)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2013
Journal Name
International Journal Of Advanced Research In Computer Science And Software Engineering
Boundary & Geometric Region Features Image Segmentation for Quadtree Partitioning Scheme
...Show More Authors

In this paper, an efficient image segmentation scheme is proposed of boundary based & geometric region features as an alternative way of utilizing statistical base only. The test results vary according to partitioning control parameters values and image details or characteristics, with preserving the segmented image edges.

Publication Date
Tue Jun 13 2023
Journal Name
Journal Of Survey In Fisheries Sciences
Spectrum Analyzing X-ray Data Image (FITS) Using Ds9 Program
...Show More Authors

n this study, data or X-ray images Fixable Image Transport System (FITS) of objects were analyzed, where energy was collected from the body by several sensors; each sensor receives energy within a specific range, and when energy was collected from all sensors, the image was formed carrying information about that body. The images can be transferred and stored easily. The images were analyzed using the DS9 program to obtain a spectrum for each object,an energy corresponding to the photons collected per second. This study analyzed images for two types of objects (globular and open clusters). The results showed that the five open star clusters contain roughly t

... Show More
View Publication Preview PDF