A computerized investigation has been carried out on the design of six electrodes electrostatic lenses used in electron gun application. The Finite-Element Method (FEM) was used in the solution of Laplace equation for determine the axial potential distribution. The electron trajectory under zero magnification condition. The optical properties, spherical and chromatic aberrations, the object and image focal length and object and image position are calculated. A very good futures for the electron gun with these lenses have been computed where are a beam current of 8.7*10-7A can be supplied using cathode tip of radius 10nm.
The behavior of AC conductivity (σac), loss tangent (tan δ), and relative permittivity (ε′) for composites of PVC-P/graphite electrode waste (GEW) was investigated, and a qualitative explanation was provided as a function of PVC-P weight fractions (0, 5, 10, 15, 20, and 25) wt. percent, temperature (30-90) °C, and frequency (100Hz-2MHz). The behaviors of the composites' ac. conductivity and impedance as a frequency function and temperature have been examined. The permittivity was shown to rise with increasing temperature (Tg). The relative permittivity increased as the GEW filler concentration increased and was highest in the low-frequency range; nevertheless decreased as the frequency increased.
Mass transfer correlations for iron rotating cylinder electrode in chloride/sulphate solution, under isothermal and
controlled heat transfer conditions, were derived. Limiting current density values for the oxygen reduction reaction from
potentiostatic experiments at different bulk temperatures and various turbulent flow rates, under isothermal and heat
transfer conditions, were used for such derivation. The corelations were analogous to that obtained by Eisenberg et all
and other workers.
The aim of this work is to evaluate the one- electron expectation value from the radial electronic density function D(r1) for different wave function for the 2S state of Be atom . The wave function used were published in 1960,1974and 1993, respectavily. Using Hartree-Fock wave function as a Slater determinant has used the partitioning technique for the analysis open shell system of Be (1s22s2) state, the analyze Be atom for six-pairs electronic wave function , tow of these are for intra-shells (K,L) and the rest for inter-shells(KL) . The results are obtained numerically by using computer programs (Mathcad).
An Expression for the transition charge density is investigated
where the deformation in nuclear collective modes is taken into
consideration besides the shell model transition density. The
inelastic longitudinal C2 and C4 form factors are calculated using
this transition charge density for the Ne Mg 20 24 , , Si 28 and S 32
nuclei. In this work, the core polarization transition density is
evaluated by adopting the shape of Tassie model togther with the
derived form of the ground state two-body charge density
distributions (2BCDD's). It is noticed that the core polarization
effects which represent the collective modes are essential in
obtaining a remarkable agreement between the calculated inelastic
longi
Shell model and Hartree-Fock calculations have been adopted to study the elastic and inelastic electron scattering form factors for 25Mg nucleus. The wave functions for this nucleus have been utilized from the shell model using USDA two-body effective interaction for this nucleus with the sd shell model space. On the other hand, the SkXcsb Skyrme parameterization has been used within the Hartree-Fock method to get the single-particle potential which is used to calculate the single-particle matrix elements. The calculated form factors have been compared with available experimental data.