In Automatic Speech Recognition (ASR) the non-linear data projection provided by a one hidden layer Multilayer Perceptron (MLP), trained to recognize phonemes, and has previous experiments to provide feature enhancement substantially increased ASR performance, especially in noise. Previous attempts to apply an analogous approach to speaker identification have not succeeded in improving performance, except by combining MLP processed features with other features. We present test results for the TIMIT database which show that the advantage of MLP preprocessing for open set speaker identification increases with the number of speakers used to train the MLP and that improved identification is obtained as this number increases beyond sixty. We also present a method for selecting the speakers used for MLP training which further improves identification performance.
A simple, rapid and environmentally friendly dispersive liquid–liquid microextraction method-based spectrophotometric method for the trace determination of folic acid has been developed. The proposed method is based on the formation of a deep yellow product via reaction of folic acid and 1,2-naphthoquine-4-sulfonate at pH = 9. The formed complex was extracted using a mixture of chloroform and ethanol. Then, the tiny organic droplets were measured at λ = 520 nm. At the optimum conditions, linearity was ranged from 0.05 to 1.5 μg/mL for the standard and samples, with a linear correlation coefficient of 0.9996. The detection limits were 0.02, 0.027, 0.03, 0.02 and 0.04 μg/mL for standard, tablet (5 mg), tablet (1 mg), syrup and fl
... Show MoreRecognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),
... Show MoreFerritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m
... Show MoreThe study aims to provide a Suggested model for the application of Virtual Private Network is a tool that used to protect the transmitted data through the Web-based information system, and the research included using case study methodology in order to collect the data about the research area ( Al-Rasheed Bank) by using Visio to design and draw the diagrams of the suggested models and adopting the data that have been collected by the interviews with the bank's employees, and the research used the modulation of data in order to find solutions for the research's problem.
The importance of the study Lies in dealing with one of the vital topics at the moment, namely, how to make the information transmitted via
... Show MoreIn this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho
... Show MoreIn this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo
... Show MoreBackground: The posterior slope of the articular eminence of completely edentulous patients compared to patients with maintained occlusion shows significant flattening. This study aimed to correlate between the flattening of the posterior slope of the articular eminence, with dental status, age, genders, on both sides using computed tomography. Materials and Methods: The sample of the present study was a total of 117 Iraqi subjects, who admitted to the maxillofacial department at Al-Sadr Teaching Hospital in Al-Najaf city. The examination was performed on CT scanner; the eminence inclination was measured in two methods using sagittal section. Results: Clinically, the inclination of articular eminence was higher in edentulous subjects than i
... Show MoreObjectives: Dickkopf-1 (DKK-1) is WNT/b-catenin pathway antagonist which plays a detrimental role in the development of diabetic retinopathy (DR). This research aimed to assess serum DKK-1 levels in diabetic patients who have and have not developed DR and, compare them with the control subjects finding out whether we can use it as an indicator for DR early diagnosis and to find out which one of the widely used two groups of antidiabetic treatments had the greater effect on this biomarker and hence on the progression of DR. Methods: The study participants were divided into two subgroups: First, 70 patients (36 male, 34 female) with type 2 diabetes mellitus, among them 35 patients diagnosed with DR and 35 with no evidence of DR, and s
... Show More