The aqueous extract of banana fruits peal was tested for its effect on mitosis . The root tips of Allium cepa were used as plant test system and the bone marrow cells of the albino mice Mus musculus were used as mammalians test system in vivo .Root tips of Allium cepa were treated for four hours with five concentrations of the extract (5 , 10 , 20 , 40 ,60 mg / ml.).The Metaphase was arrested in all the treatments , the highest percentage ( 100 % ) was recorded in the first concentration , the last concentration caused stickiness and clumping of the chromosomes. The treatments did not cause significant difference in the mitotic index. The peals extract (5 mg /ml) was compared with the extracts of fruits bulb, leaves and roots of banana plant, it was found that the extract of fruits peal is the best considering the highest percentages of arrested Metaphase in the root tips cells. The albino mice Mus musculus were injected intraperitonial with the peals extract ( 0.01 , 0.02, 0.04, 0.06, 0.08 mg / gm body weight), the percentages of arrested Metaphase in the bone marrow of these animals were comparable to the recorded percentages when the animals were injected with colchicine ( 0.01 mg / gm b.w.) .This study revealed the antimitotic activity of the aqueous extract of banana fruits peal on both the plant and mammalian cells in vivo. Studies will be conducted to investigate the effect of the extract and its components on the proliferation of cancer cells in vitro and in vivo.
Bacterial water pollution is a genuine general wellbeing concern since it causes various maladies. Antimicrobial nanofibers can be integrated by incorporating nanobiocides, for example, silver nanoparticles into nanofibers. Nylon 6 was dissolved in formic acid at a concentration of (25 wt. %) and tough antibacterial (AgNO3/Nylon) nanofibers were produced utilizing electrospinning system. Polymer solution was tested before accomplishing electrospinning process to acquire its surface tension, electric conductivity and viscosity, where every one of those parameters increased relatively with increasing concentration of (AgNO3) additions. SEM and EDX spectra were utilized to focus on the morphology, surface elemental mem
... Show MoreDevelopment and population expansion have the lion's share of driving up the fuel cost. Biodiesel has considerable attention as a renewable, ecologically friendly and alternative fuel source. In this study, CaO nanocatalyst is produced from mango leaves as a catalysis for the transesterification of waste cooking oil (WCO) to biodiesel. The mango tree is a perennial plant, and its fruit holds significant economic worth due to its abundance of vitamins and minerals. This plant has a wide geographical range and its leaves can be utilized without any negative impact on its growth and yield. An analysis was conducted to determine the calcium content in the fallen leaves, revealing a significant quantity of calcium that holds potential fo
... Show MoreIn this study, the thermal buckling behavior of composite laminate plates cross-ply and angle-ply all edged simply supported subjected to a uniform temperature field is investigated, using a simple trigonometric shear deformation theory. Four unknown variables are involved in the theory, and satisfied the zero traction boundary condition on the surface without using shear correction factors, Hamilton's principle is used to derive equations of motion depending on a Simple Four Variable Plate Theory for cross-ply and angle-ply, and then solved through Navier's double trigonometric sequence, to obtain critical buckling temperature for laminated composite plates. Effect of changing some design parameters such as, ortho
... Show MoreIn this research, the effect of reinforcing epoxy resin composites with a filler derived from chopped agriculture waste from oil palm (OP). Epoxy/OP composites were formed by dispersing (1, 3, 5, and 10 wt%) OP filler using a high-speed mechanical stirrer utilizing a hand lay-up method. The effect of adding zinc oxide (ZnO) nanoparticles, with an average size of 10-30 nm, with different wt% (1,2,3, and 5wt%) to the epoxy/oil palm composite, on the behavior of an epoxy/oil palm composite was studied with different ratios (1,2,3, and 5wt%) and an average size of 10-30 nm. Fourier Transform Infrared (FTIR) spectrometry and mechanical properties (tensile, impact, hardness, and wear rate) were used to examine the composites. The FTIR
... Show MorePseudomonas aeruginosa has been identified as the main causative agent responsible for severe infections in burn patients worldwide. This study aimed to investigate the prevalence of the exoU/exoS genotype in P. aeruginosa isolates collected from burn wound infections in Iraq. From January to April 2023, a total of eighty isolates of P. aeruginosawere obtained from patients with burn wound infections in two Iraqi hospitals (Teaching Baghdad Hospital and AL-Yarmok Hospital).The isolates were first identified using biochemical tests and then verified using molecular techniques, specifically by targeting the 16S rRNA gene with specific primers. The exoU/exoS genotype was detected using conventional polymerase chain reaction (PCR) by specifical
... Show MoreABSTRACT: Ultimate bearing capacity of soft ground reinforced with stone column was recently predicted using various artificial intelligence technologies such as artificial neural network because of all the advantages that they can offer in minimizing time, effort and cost. As well as, most of applied theories or predicted formulas deduced analytically from previous studies were feasible only for a particular testing environment and do not match other field or laboratory datasets. However, the performance of such techniques depends largely on input parameters that really affect the target output and missing of any parameter can lead to inaccurate results and give a false indicator. In the current study, data were collected from previous rel
... Show MoreThis study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show More