Two groups of chronic hepatitis B and C virus patients were divided into Pre-treated patients (25 CHB patients with positive HBs Ag for more than 6 months and 40 CHC patients), and post-treated patients [12 CHB patients (4, 6, and 2 were treated with lamivudine, IFN-? and combination of LMV + IFN-? respectively), and 27 patients for CHC (3, 13 and 11 patients were treated with Ribavirin, IFN-? and combination therapy (RBV+ IFN-?) respectively].These patients were followed up for 6 months. By using ELISA technique, levels of IL-6, IL-10, IFN-? and TNF-? were measured in vivo and in vitro (supernatant of PBMCs stimulated with PHA) and compared with healthy control. The mean level of IL-6, IL-10 and TNF-? in CHB patients showed significant differences (P<0.05) between pre- and post-treated patients in vivo and in vitro, while there was no significant difference in IFN- ? between pre- and post-treated patients in vivo and in vitro. The difference between control and CHB patients was highly significant (P<0.0001) in IL-6 , IL-10 and TNF- ? levels in vivo and in vitro. In CHC patients the mean levels of IL-6, IL-10, IFN- ? and TNF- ? showed significant difference between pre- and post-treated patients in vivo and in vitro. There was highly significant difference (P<0.0001) between patients and control in IL-10 levels. Hence, these observations indicate the predominance of Th2 cytokine, which promote the persistency of the CHB and CHC virus.
Solar collectors, in general, are utilized to convert the solar energy into heat energy, where it is employed to generate electricity. The non-concentrating solar collector with a circular shape was adopted in the present study. Ambient air is heated under a translucent roof where buoyant air is drawn from outside periphery towards the collector center (tower base). The present study is aimed to predict and visualize the thermal-hydrodynamic behavior for airflow under inclined roof of the solar air collector, SAC. Three-dimensional of the SAC model using the re-normalization group, RNG, k−ε turbulence viscus model is simulated. The simulation was carried out by using ANSYS-FLUENT 14.5. The simulation
... Show MoreThis work bases on encouraging a generous and conceivable estimation for modified an algorithm for vehicle travel times on a highway from the eliminated traffic information using set aside camera image groupings. The strategy for the assessment of vehicle travel times relies upon the distinctive verification of traffic state. The particular vehicle velocities are gotten from acknowledged vehicle positions in two persistent images by working out the distance covered all through elapsed past time doing mollification between the removed traffic flow data and cultivating a plan to unequivocally predict vehicle travel times. Erbil road data base is used to recognize road locales around road segments which are projected into the commended camera
... Show MoreOrthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parall
... Show MoreHigh-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,
... Show MoreAbstract We have been studied and analysis the electronic current at the interfaces of Au/PTCDA system according to simple quantum mode for the electronics transition rate due to postulate quantum theory. Calculation of electronic current were performed at interface of Au/PTCDA as well as for investigation the feature of electronic density at this devices. The transition of electronic current study under assume the electronic state of Au and PTCDA were continuum and the states of electrons must be closed to energy level for Au at Fermi state, and the potential at interface feature depended on structure of Au and PTCDA material. The electronic transition current feature was dependent on the driving force energy that results of absorption ene
... Show MoreOne of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreBiometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show MoreReservoir study has been developed in order to get a full interesting of the Nahr Umr formation in Ratawi oil field. Oil in place has been calculated for Nahr Umr which was 2981.37 MM BBL. Several runs have been performed to get matching between measured and calculated of oil production data and well test pressure. In order to get the optimum performance of Nahr Umr many strategies have been proposed in this study where vertical and horizontal wells were involved in addition to different production rates. The reservoir was first assumed to be developed with vertical wells only using production rate of (80000–125000) STB/day. The reservoir is also proposed to produce using horizontal wells besides vertical wells with production rat
... Show More