The rise of edge-cloud continuum computing is a result of the growing significance of edge computing, which has become a complementary or substitute option for traditional cloud services. The convergence of networking and computers presents a notable challenge due to their distinct historical development. Task scheduling is a major challenge in the context of edge-cloud continuum computing. The selection of the execution location of tasks, is crucial in meeting the quality-of-service (QoS) requirements of applications. An efficient scheduling strategy for distributing workloads among virtual machines in the edge-cloud continuum data center is mandatory to ensure the fulfilment of QoS requirements for both customer and service provider. Existing research used metaheuristic algorithm to solve tak scheduling problem, however, must of the existing metaheuristics used suffers from falling into local mina due to their inefficiency to avoid unfeasible region in the solution search space. Therefore, there is a dire need for an efficient metaheuristic algorithm for task scheduling. This study proposed an FPA-ISFLA task scheduling model using hybrid flower pollination and improved shuffled frog leaping algorithms. The simulation results indicate that the FPA-ISFLA algorithm is superior to the PSO algorithm in terms of makespan time, resource utilization, and execution cost reduction, especially with an increasing number of tasks.
The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show MoreAbstract:
The objective of this study, is to attempt to explain the reality of the Structural Imbalances in the Iraqi Economy during the period of research, by providing a quantitative analysis of the most important types of Imbalances, Which are represented by the disruption in the Productive Structure, the imbalance of the structure of Public Budget, and the imbalance of the Structure of Trade. The problem of the research, is the fact that the economy structure in Iraq has long suffered from an Imbalances in its economic structure, which are represented in the unequal relations between its constituent elements, according to the proportions levels defined by the economic theory.
... Show MoreA laboratory experiment has been carried out in the College of Science-University of Salahaddin to study the effect of different levels (0,5,10 and 15%) and sizes(250 and 1000µm) of walnut seeds residues and (160mg.kg-1) phosphorus fertilization on the concentration of phosphorus availability and alkaline phosphatase activity in calcareous soil during 15 and 30 days period of incubation, the experimental design in factorial complet randomize design (C.R.D) with three replications. The results indicated that the application of different levels of walnut seed residues decreases the concentration of phosphorus availability and alkaline phosphatase activity, however the results revealed that combination between levels and sizes o
... Show MoreThe administration on the basis of the activities designed to evaluate the performance of activities in terms of cost, time and quality by identifying activities that add value and those that are no add value and enables the administration of making up their own continuous improvement in production, through lower costs and reduce the time and improve the quality and reduce the incidence of spoilage and waste, y based search Ally premise that (the continuous improvement of the adoption of management style on the basis of the activities helps management in decision-making wise to reduce costs) to prove the hypothesis has sought research to achieve its goal of Alkadivh and Alkoppelan &nb
... Show MoreAs they are the smallest functional parts of the muscle, motor units (MUs) are considered as the basic building blocks of the neuromuscular system. Monitoring MU recruitment, de-recruitment, and firing rate (by either invasive or surface techniques) leads to the understanding of motor control strategies and of their pathological alterations. EMG signal decomposition is the process of identification and classification of individual motor unit action potentials (MUAPs) in the interference pattern detected with either intramuscular or surface electrodes. Signal processing techniques were used in EMG signal decomposition to understand fundamental and physiological issues. Many techniques have been developed to decompose intramuscularly detec
... Show MoreOne of the significant stages in computer vision is image segmentation which is fundamental for different applications, for example, robot control and military target recognition, as well as image analysis of remote sensing applications. Studies have dealt with the process of improving the classification of all types of data, whether text or audio or images, one of the latest studies in which researchers have worked to build a simple, effective, and high-accuracy model capable of classifying emotions from speech data, while several studies dealt with improving textual grouping. In this study, we seek to improve the classification of image division using a novel approach depending on two methods used to segment the images. The first
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023
Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l
... Show More