Mefenamic acid (MA) is one of the non-steroidal anti-inflammatory drugs, it is widely used probably due to having both anti-inflammatory and analgesic activity, the main side effects of mefenamic acid include gastrointestinal tract (GIT) disturbance mainly diarrhea, peptic ulceration, and gastric bleeding. The analgesic effects of NSAIDs are probably linked to COX-2 inhibition, while COX-1 inhibition is the major cause of this classic adverse effects. Introduction of thiazolidinone may lead to the increase in the bulkiness leads to the preferential inhibition of COX-2 rather than COX-1 enzyme. The study aimed to synthesize derivatives of mefenamic acid with more potency and to decrease the drug's potential side effects, new series of 4-thiazolidinone derivatives of mefenamic acid were synthesized IVa-g. The synthetic procedures for target compounds and their intermediates are designed to be as follows: acylation of secondary amine of mefenamic acid by chloroacetylchloride to produce compound (I), then reaction between compound (I) and hydrazine hydrate to form hydrazine derivative of mefenamic acid (compound II). After that, Schiff base formation by addition of seven benzaldehyde derivatives and finally, cyclization in presence of thioglycolic acid to form 4-thiazolidinone heterocyclic ring. The characterization of the titled compounds has been established on the basis of their spectral FTIR, 1HNMR data, and by measurements of their physical properties. In vivo acute anti-inflammatory effect of the synthesized compounds was evaluated in rats using egg-white induced edema model of inflammation. The tested compounds and the reference drug produced significant reduction of paw edema with respect to the effect of dimethyl sulfoxide 10%v/v (control group). Compound IVe showed more potent effect than mefenamic acid at 240-300 min, while at time 300 min, compounds IVa and IVd exhibit more potent anti-inflammatory effect than mefenamic acid (50mg/kg, i.p.) as they reduced paw edema significantly more than mefenamic acid at mentioned intervals (p<0.05) . On the other hand compound IVc exhibited lower anti-inflammatory effect.
This study including synthesis of some new Schiff bases compounds [1‐6] from the reaction of Sulfamethoxazole drug with some aromatic aldehydes in classical Schiff base method then treatment Schiff bases with succinic anhydride to get oxazepines rings [7-11]These derivatives were characterized by melting point, FT‐IR, 1H NMR and mass spectra. Some of synthesized compounds were evaluated in vitro for their antibacterial activities against three kinds of pathogenic strains Staphylococcus aureus, Escherichia coli
The New Schiff base ligand 4,4'-[(1,1'-Biphenyl)-4,4'-diyl,bis-(azo)-bis-[2-Salicylidene thiosemicarbazide](HL)(BASTSC)and its complexes with Co(II), Ni(II), and Cu(II) were prepared and characterized by elemental analysis, electronic, FTIR, magnetic susceptibility measurements. The analytical and spectral data showed, the stiochiometry of the complexes to be 1:1 (metal: ligand). FTIR spectral data showed that the ligand behaves as dibasic hexadentate molecule with (N, S, O) donor sequence towards metal ions. The octahedral geometry for Co(II), Ni(II), and Cu(II) complexes and non electrolyte behavior was suggested according to the analysis data.
The two-frequency shell model approach is used to calculate the
ground state matter density distribution and the corresponding root
mean square radii of the two-proton17Ne halo nucleus with the
assumption that the model space of 15O core nucleus differ from the
model space of extra two loosely bound valence protons. Two
different size parameters bcore and bhalo of the single particle wave
functions of the harmonic oscillator potential are used. The
calculations are carried out for different configurations of the outer
halo protons in 17Ne nucleus and the structure of this halo nucleus
shows that the dominant configuration when the two halo protons in
the 1d5/2 orbi
The work includes synthesis and characterization of some new heterocyclic compounds, as flow: The compound (3) (5-(4-chlorophenyl) -2-hydrazinyl-1,3,4-oxadiazole was synthesized by using two methods; the first method includes the direct reaction between hydrazine hydrate 80% and 5-(4-chlorophenyl)-2- (ethylthio) 1,3,4-oxadiazole (1), the second method involves converting 5-(4-chlorophenyl)-1,3,4-oxadiazol-2-amine (2) to diazonium salt then reducing this salt to compound (3) by stannous chloride. Compound (3) was used as starting material for synthesizing several fused heterocyclic compounds. The compound 6-(4- chlorophenyl)[1,2.4] triazolo [3,4,b][1,3,4] oxadiazole-3-(2H) thione (compound 4) was synthesized from the reaction of compo
... Show MoreThe complexes of Schiff base of 4-aminoantipyrine and 1,10-phenanthroline with metal ions Mn (II), Cu (II), Ni (II) and Cd (II) were prepared in ethanolic solution, these complexes were characterized by Infrared , electronic spectra, molar conductance, Atomic Absorption ,microanalysis elemental and magnetic moment measurements. From these studies the tetrahedral geometry structure for the prepared complexes were suggested.The prepared ligand of 4-aminoantipyrine was characterized by using Gc-mass spectrometer .
The transverse electron scattering form factors have been studied for low –lying excited states of 7Li nucleus. These states are specified by J? T= (0.478MeV), (4.63MeV) and (6.68MeV). The transitions to these states are taking place by both isoscalar and isovector components. These form factors have been analyzed in the framework of the multi-nucleon configuration mixing of harmonic oscillator shell model with size parameter brms=1.74fm. The universal two-body of Cohen-Kurath is used to generate the 1p-shell wave functions. The core polarization effects are included in the calculations through effective g-factors and resolved many discrepancies with experiments. A higher configuration effect outside the 1p-shell model space, such
... Show MoreInelastic longitudinal electron scattering form factors to 2+ and 4+ states in 65Cu nucleus has been calculated in the (2p3/2 1f 5/2 2p1/2) shell model space with the F5PVH effective interaction. The harmonic oscillator potential has been applied to calculate the wave functions of radial single-particle matrix elements. Two shell model codes, CP and NUSHELL are used to obtain results. The form factor of inelastic electron scattering to 1/21−, 1/22−, 3/22−, 3/23−, 5/21−, 5/22− and 7/2- states and finding the transition probabilities B (C2) (in units of e2 fm4) for these transitions and B (C4) (in units of e2 fm8) for the transition 7/2-, and comparing them with experimental data. Both the form factors and reduced transition pr
... Show MoreInternal conversion coefficients (ICC) and electron–positron pair conversion coefficients (PCC) for multipole transition of the core nucleus 88Sr have been calculated theoretically. The calculation is based on the relativistic Dirac–Fock (DF) solutions using the so called ‘‘Frozen Orbital’’ approximation, takes into account the effect of atomic vacancies created in the conversion process, covering a transition energies of 1–5000 keV. A large number of points were used to minimize any errors due to mesh-size effects. The internal conversion coefficients display a smooth monotonic dependence on transition energy, multipolarity and atomic shell. Comparing the values of PCC to ICC, it is interesting to note, that the energy dep
... Show More