Liquisolid compact is the most promising technique for increasing dissolution rate and bioavailability of poorly soluble drugs.Clopidogrel bisulfate is an oral antiplatelets used for treatment and prophylaxis of cardiovacular and peripheral vascular diseases related to platelets aggreagation.Clopidogrel has low solubility at high pH media of intestine and low bioavailability of a bout 50% after oral doses.The purpose of this work was to enhance dissolution pattern of clopidogrel through its formulation into liquisolid tablets.A mathematical model was used to calculate the optimum quantities of tween 80 , carrier (Avicel PH 102) and coating material (Aerosil 200) needed to prepare acceptably flowing and compactible powder mixtures.The liquisolid tablets were evaluated for hardness, percent friability, weight variation, content uniformity , disintegration time and in vitro drug release profile.DSC , FTIR , XRD and SEM were used for assessment of physicochemical properties of drug and compatibility with excipients in the liquisolid compacts.The selected formulation (F2) released 92.2% of its content during first 10 min. compared to 13.6% of directly compressed tablet and 24.2% of marketed tablet. In conclusion the dissolution rate and bioavailability of clopidogrel can be enhanced to a great extent by liquisolid technique.
Herein, a cost-effective bio approach using extract derived from desert truffles (Tirmania nivea) is utilized to synthesize gold nanoparticles (AuNPs). AuNPs were thoroughly investigated using UV–vis, XRD, SEM, and TEM analyses. It was shown that nanoparticles had an fcc structure with a smooth spherical surface, an average diameter of 9.44 ± 0.26 nm, and an SPR band observed at 548 nm. Investigations were conducted on AuNPs' antibacterial and anti-cancer properties of prostate cancer cells. The findings suggest that AuNPs showed better antibacterial effects against S. aureus compared to E. coli, P. aeruginosa, and K. pneumoniae. AuNPs’ combination with antibiotics demonstrated a synergistic effect with significant antibacterial activi
... Show MoreBackground: 37% phosphoric acid (PA) is the traditional enamel etching technique prior to bracket adhesion, yet it has been implicated in numerous enamel injuries. The purpose of the current study was to create a calcium phosphate (CaP) etching paste in a simplified capsule formula that can underpin clinically adequate bracket bond strength without jeopardizing the integrity of enamel upon the debracketing procedure. Materials and Methods: micro-sized hydroxyapatite (HA) powder was mixed with 40% PA solution to prepare experimental acidic CaP paste. Sixty human premolars were assigned into two groups of 30 each. Enamel conditioning was accomplished using 37% PA-gel for control group and CaP paste for e
... Show MoreFlaxseed from the flax plant (Linum usitatissimum), which has been cultivated for domestic use since prehistoric times. This study aims to investigate presence of antibacterial effect of flaxseed extract against selected oral pathogen in-vitro.
Many attempts have been made to modify the surface of orthodontic micro-implants and prevent the development of microbes by coating them with antimicrobial nanoparticles (NPs). The purpose of the present study was to evaluate the cytotoxicity of different NPs, namely, TiO2 and zinc oxide (ZnO) NPs, that are used to coat titanium orthodontic micro-implants.
Thirty orthodontic micro-implants were included in this study. Those were divided into three groups: control group without coating, TiO2-coated orthodontic micro-implants, and TiO2- and ZnO-coated orthodontic micro-implants. Scann
Acetophenone sulfamethoxazole and 3-Nitrobenzophenone sulfamethoxazole were prepared from the reaction of sulfamethoxazole with two ketones. The prepared ligands were identified by (C.H.N) analysis and UV-VIS, FT-IR spectroscopic techniques. Metal complexes of the two ligands were prepared in an aqueous alcohol with Zn (II), Mn (II) and Cu (II) ions with a molar ratio1:1. The proposed general formula for the resulting complexes was [ML.CL2.H2O]H2O .The complexes were characterized by (C.H.N) technique , spectroscopic methods ,conductivity, atomic absorption ,magnetic susceptibility measurements and melting point. According to the results obtained, the suggested geometry is to be octahedral for all the complexes.
A hierarchically porous structured zeolite composite was synthesized from NaX zeolite supported on carbonaceous porous material produced by thermal treatment for plum stones which is an agro-waste. This kind of inorganic-organic composite has an improved performance because bulky molecules can easily access the micropores due to the short diffusion path to the active sites which means a higher diffusion rate. The composite was prepared using a green synthesis method, including an eco-friendly polymer to attach NaX zeolite on the carbon surface by phase inversion. The synthesized composite was characterized using X-ray diffraction spectrometry, Fourier transforms infrared spectroscopy, field emission scanning electron microscopy, energy d
... Show MoreThe cost-effective removal of heavy metal ions represents a significant challenge in environmental science. In this study, we developed a straightforward and efficient reusable adsorbent by amalgamating chitosan and vermiculite (forming the CSVT composite), and comprehensively investigated its selective adsorption mechanism. Different techniques, such as Fourier-transform infrared spectroscopy (FTIR), zeta potential analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer, Emmett, Teller (BET) analysis were employed for this purpose. The prepared CSVT composite exhibited a larger surface area and higher mesoporosity increasing from 1.9 to 17.24 m2/g compared to pristine chitosan. The adsorption capabilities of the
... Show More