Preferred Language
Articles
/
bijps-520
Detection of Carbohydrate Antigen CA19-9 Levels in Sera and Tissues' Homogenate of Breast and Thyroid Benign Cases
...Show More Authors

         The aims of the present study are to evaluate the levels of CA19-9 in sera and tissues' homogenate of breast and thyroid benign patients in order to assess its use as an early diagnostic parameter in differentiation between malignant and benign cases. The study was conducted on 8 patients with breast benign tumor and 8 patients with thyroid benign tumor, by the enzyme linked immunosorbent assay (ELISA) technique. The results of CA19-9 levels in sera were (15 ±1.58 and 10.67 ±2.08)U/ml respectively compared with serum CA19-9 levels of control group which was 7.74 ±4.92 U/ml, the results were found to be highly significantly in breast tumor patients and non significantly in thyroid tumor patients than control group. The results of CA19-9 levels in tissues' homogenate were (356.2 ±173.75 and 20 ±14.4)U/ml respectively. The results were found to be highly significant in tissues' homogenate of breast tumor patients and non significant in thyroid tumor patients of higher compare with the it's serum levels of the same patients groups.  

Key words: Carbohydrate antigen CA19-9, Benign Cases  and  CA19-9, Breast tumor  and CA19-9, Thyroid tumor  and  CA19-9.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Jan 13 2018
Journal Name
Journal Of Engineering
Producing Coordinate Time Series for Iraq's CORS Site for Detection Geophysical Phenomena
...Show More Authors

Global Navigation Satellite Systems (GNSS) have become an integral part of wide range of applications. One of these applications of GNSS is implementation of the cellular phone to locate the position of users and this technology has been employed in social media applications. Moreover, GNSS have been effectively employed in transportation, GIS, mobile satellite communications, and etc. On the other hand, the geomatics sciences use the GNSS for many practical and scientific applications such as surveying and mapping and monitoring, etc.

In this study, the GNSS raw data of ISER CORS, which is located in the North of Iraq, are processed and analyzed to build up coordinate time series for the purpose of detection the

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 20 2023
Journal Name
Fire
An Efficient Wildfire Detection System for AI-Embedded Applications Using Satellite Imagery
...Show More Authors

Wildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob

... Show More
View Publication
Scopus (23)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Wed Sep 07 2022
Journal Name
2022 Iraqi International Conference On Communication And Information Technologies (iiccit)
Construct an Efficient DDoS Attack Detection System Based on RF-C4.5-GridSearchCV
...Show More Authors

View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Computational Intelligence Systems
Evolutionary Feature Optimization for Plant Leaf Disease Detection by Deep Neural Networks
...Show More Authors

View Publication
Scopus (51)
Crossref (51)
Scopus Clarivate Crossref
Publication Date
Wed Apr 01 2020
Journal Name
Translational Andrology And Urology
Robotic-assisted magnetic resonance imaging ultrasound fusion results in higher significant cancer detection compared to cognitive prostate targeting in biopsy naive men
...Show More Authors

View Publication
Scopus (15)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Fri Nov 01 2019
Journal Name
Ecology, Environment And Conservation
Measurement of the concentration of lead in gasoline stations and in air battery factories and their effect of cytogenetic and hematological parameter in workers
...Show More Authors

Publication Date
Fri Nov 01 2019
Journal Name
2019 1st International Informatics And Software Engineering Conference (ubmyk)
Radial Basis Function (RBF) Based on Multistage Autoencoders for Intrusion Detection system (IDS)
...Show More Authors

In this paper, RBF-based multistage auto-encoders are used to detect IDS attacks. RBF has numerous applications in various actual life settings. The planned technique involves a two-part multistage auto-encoder and RBF. The multistage auto-encoder is applied to select top and sensitive features from input data. The selected features from the multistage auto-encoder is wired as input to the RBF and the RBF is trained to categorize the input data into two labels: attack or no attack. The experiment was realized using MATLAB2018 on a dataset comprising 175,341 case, each of which involves 42 features and is authenticated using 82,332 case. The developed approach here has been applied for the first time, to the knowledge of the authors, to dete

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
2020 2nd Annual International Conference On Information And Sciences (aicis)
An Enhanced Multi-Objective Evolutionary Algorithm with Decomposition for Signed Community Detection Problem
...Show More Authors

View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Sat Nov 02 2013
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Images Segmentation Based on Fast Otsu Method Implementing on Various Edge Detection Operators
...Show More Authors