Some new norms need to be adapted due to COVID-19 pandemic period where people need to wear masks, wash their hands frequently, maintain social distancing, and avoid going out unless necessary. Therefore, educational institutions were closed to minimize the spread of COVID-19. As a result of this, online education was adapted to substitute face-to-face learning. Therefore, this study aimed to assess the Malaysian university students’ adaptation to the new norms, knowledge and practices toward COVID-19, besides, their attitudes toward online learning. A convenient sampling technique was used to recruit 500 Malaysian university students from January to February 2021 through social media. For data collection, all students were asked to fill in a questionnaire that was developed based on previous literature, using Google Forms. 498 students completed the questionnaire (response rate 99.6%). Malaysian Ministry of Health was the main source (83.73%) that students refer to when looking for information on COVID-19. Only 40% of the participants had good overall knowledge about COVID-19; such knowledge was influenced by the students' field of study. The current practice towards COVID-19 was good only by 26.1% of participating students; such practice was influenced by the ethnic groups. Additionally, 60% of participated students agreed that COVID-19 can be successfully controlled. About one-third of participants had positive attitudes toward online learning. The major challenges facing students during online learning include distraction of the learning environment (80%), unstable internet connectivity (75%), lack of motivation (70%), limited technical skills (41%), and limited broadband data (34%). In conclusion, the knowledge and practice toward COVID-19 was good in less than half of Malaysian university students. Attitudes to the controlling of COVID-19 were positive, while the attitudes toward online learning were neutral among most of the Malaysian university students. Challenges toward online learning are diverse and include both technical and student-related problems.
In this research, the covariance estimates were used to estimate the population mean in the stratified random sampling and combined regression estimates. were compared by employing the robust variance-covariance matrices estimates with combined regression estimates by employing the traditional variance-covariance matrices estimates when estimating the regression parameter, through the two efficiency criteria (RE) and mean squared error (MSE). We found that robust estimates significantly improved the quality of combined regression estimates by reducing the effect of outliers using robust covariance and covariance matrices estimates (MCD, MVE) when estimating the regression parameter. In addition, the results of the simulation study proved
... Show MoreThis article aims to determine the time-dependent heat coefficient together with the temperature solution for a type of semi-linear time-fractional inverse source problem by applying a method based on the finite difference scheme and Tikhonov regularization. An unconditionally stable implicit finite difference scheme is used as a direct (forward) solver. While by the MATLAB routine lsqnonlin from the optimization toolbox, the inverse problem is reformulated as nonlinear least square minimization and solved efficiently. Since the problem is generally incorrect or ill-posed that means any error inclusion in the input data will produce a large error in the output data. Therefore, the Tikhonov regularization technique is applie
... Show MoreIn this study, the photodegradation of Congo red dye (CR) in aqueous solution was investigated using Au-Pd/TiO2 as photocatalyst. The concentration of dye, dosage of photocatalyst, amount of H2O2, pH of the medium and temperature were examined to find the optimum values of these parameters. It has been found that 28 ppm was the best dye concentration. The optimum amount of photocatalyst was 0.09 g/75 mL of dye solution when the degradation percent was ~ 96 % after irradiation time of 12 hours, while the best amount of hydrogen peroxide was 7μl/75 mL of dye solution at degradation percent ~97 % after irradiation time of 10 hours, whereas pH 5 was the best value to carry out the reaction at the highest degradation percent. In additio
... Show MoreIn this study, silver nanoparticles (AgNPs) were synthesized using a cold plasma technique and a plasma jet. They were then used to explore how photothermal treatment may be used to treat lung cancer (A549) and normal cells (REF) <i>in vitro</i>. The anti-proliferative activity of these nanoparticles was studied after A549 cells were treated with (AgNPs) at various concentrations (100%, 50%, or 25%) and exposure times (6 or 8 min) of laser after 1 h or 24 h from exposed AgNPs. The highest growth inhibition for cancer cells is (75%) at (AgNPs) concentration (100%) and the period of exposure to the laser is (8 min). Particle size for the prepared samples varied according to the diameter o
... Show MoreArabian killifish,
In this study, the staging of normal embryonic development of
In this study, the photodegradation of Congo red dye (CR) in aqueous solution was investigated using Au-Pd/TiO2 as photocatalyst. The concentration of dye, dosage of photocatalyst, amount of H2O2, pH of the medium and temperature were examined to find the optimum values of these parameters. It has been found that 28 ppm was the best dye concentration. The optimum amount of photocatalyst was 0.09 g/75 mL of dye solution when the degradation percent was ~ 96 % after irradiation time of 12 hours, while the best amount of hydrogen peroxide was 7μl/75 mL of dye solution at degradation percent ~97 % after irradiation time of 10 hours, whereas pH 5 was the best value to carry out the reaction at the highest deg
... Show MoreThe dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show More