The rheological behavior among factors that are present in Stokes law can be used to control the stability of the colloidal dispersion system. The felodipine lipid polymer hybrid nanocarriers (LPHNs) is an interesting colloidal dispersion system that is used for rheological characteristic analysis. The LPHNs compose of polymeric components and lipids. This research aims to prepare oral felodipine LPHNs to investigate the effect of independent variables on the rheological behavior of the nanosystem. The microwave-based technique was used to prepare felodipine LPHNs (H1-H9) successfully. All the formulations enter the characterization process for particle size and PDI to ascertain the colloidal properties of the prepared nanosystem then use coaxial rotational digital rheometer for rheological evaluation. The outcomes show that all felodipine LPHNs formulations (H1-H9) had a nanosize and homogenous structure that ascertain colloidal features of the nanodispersion system. The rheogram chart indicates that all of the felodipine LPHNs formulations (H1-H9) show pseudoplastic flow (non-Newtonian flow) that have shear-thinning property. The microwave-based method prepares felodipine LPHNs formulations (H1-H9) that show excellent physical texture that ascertains its ability as a technique for the preparation of nanoparticles. All of the felodipine LPHNs formulations (H1-H9) show pseudoplastic flow that supports the physical stability of the nanosystem.
The main objective of this paper is to designed algorithms and implemented in the construction of the main program designated for the determination the tenser product of representation for the special linear group.
Hypothesis CO2 geological storage (CGS) involves different mechanisms which can store millions of tonnes of CO2 per year in depleted hydrocarbon reservoirs and deep saline aquifers. But their storage capacity is influenced by the presence of different carboxylic compounds in the reservoir. These molecules strongly affect the water wetness of the rock, which has a dramatic impact on storage capacities and containment security. However, precise understanding of how these carboxylic acids influence the rock’s CO2-wettability is lacking. Experiments We thus systematically analysed these relationships as a function of pressure, temperature, storage depth and organic acid concentrations. A particular focus was on identifying organic acid conce
... Show MoreIncreased downscaling of CMOS circuits with respect to feature size and threshold voltage has a result of dramatically increasing in leakage current. So, leakage power reduction is an important design issue for active and standby modes as long as the technology scaling increased. In this paper, a simultaneous active and standby energy optimization methodology is proposed for 22 nm sub-threshold CMOS circuits. In the first phase, we investigate the dual threshold voltage design for active energy per cycle minimization. A slack based genetic algorithm is proposed to find the optimal reverse body bias assignment to set of noncritical paths gates to ensure low active energy per cycle with the maximum allowable frequency at the optimal supply vo
... Show MoreThe purpose of this paper is to define fuzzy subspaces for fuzzy space of orderings and we prove some results about this definition in which it leads to a lot of new results on fuzzy space of orderings. Also we define the sum and product over such spaces such that: If f = < a1,…,an > and g = < b1,…bm>, their sum and product are f + g = < a1…,an, b1, …, bm> and f × g =
numerical study is applied to the mercury-argon mixture by solving the boltzman transport equation for different mixture percentage.