Background: Angiogenesis is defined as the formation of new blood vessels. However, angiogenesis in cancer will lead to tumour growth and metastasis. Therefore, anti-angiogenesis is one of the ways to slow down growth and spreading of tumour. Moringa oleifera is also known as a “Miracle tree” which has high nutritive value and various therapeutics effect in different parts of the plant. This study aims to determine the anti-angiogenic property of Moringa oleifera leaves extract by using chick chorioallantoic membrane (CAM) assay. Materials and Methods: The extracts were prepared by decoction method using methanol and water. The qualitative phytochemical screening was carried out for both methanol and aqueous extracts. The fertilised chicken eggs were divided into six groups which include negative control group (phosphate-buffer saline with pH 7.4), positive control group (sunitinib), 50% and 100% methanol extract, 50% and 100% aqueous extract. The anti-angiogenic effect of Moringa oleifera leaves extract was determined by calculating the number and percentage decrease in blood vessels in post-24 and post-48 hours of treatment. Results: Statistical analysis by one-way ANOVA has shown significant (p<0.05) percentage reduction in the blood vessels between each treatment group after 48 hours of treatment. Among all the extracts, 100% aqueous extract of Moringa oleifera was found to have highest anti-angiogenic effect with the greater percentage decrease in blood vessels (81.33%) in post-48 hours of treatment. Furthermore, the anti-angiogenic effect of Moringa oleifera leaves was found to increased when the concentration of the Moringa oleifera extract was increased. Conclusion: Moringa oleifera leaves with various phytochemicals was found to possess anti-angiogenic potential.
This paper presents a study of wavelet self-organizing maps (WSOM) for face recognition. The WSOM is a feed forward network that estimates optimized wavelet based for the discrete wavelet transform (DWT) on the basis of the distribution of the input data, where wavelet basis transforms are used as activation function.
Due to the difficulties that Iraqi students face when writing in the English language, this preliminary study aimed to improve students' writing skills by using online platforms remotely. Sixty first-year students from Al-Furat Al–Awsat Technical University participated in this study. Through these platforms, the researchers relied on stimuli, such as images, icons, and short titles to allow for deeper and more accurate participations. Data were collected through corrections, observations, and feedback from the researchers and peers. In addition, two pre and post-tests were conducted. The quantitative data were analysed by SPSS statistical Editor, whereas the qualitative data were analyzed using the Piot table, an Excel sheet. The resu
... Show MoreSteganography is a mean of hiding information within a more obvious form of
communication. It exploits the use of host data to hide a piece of information in such a way
that it is imperceptible to human observer. The major goals of effective Steganography are
High Embedding Capacity, Imperceptibility and Robustness. This paper introduces a scheme
for hiding secret images that could be as much as 25% of the host image data. The proposed
algorithm uses orthogonal discrete cosine transform for host image. A scaling factor (a) in
frequency domain controls the quality of the stego images. Experimented results of secret
image recovery after applying JPEG coding to the stego-images are included.
This paper introduces a relation between resultant and the Jacobian determinant
by generalizing Sakkalis theorem from two polynomials in two variables to the case of (n) polynomials in (n) variables. This leads us to study the results of the type: , and use this relation to attack the Jacobian problem. The last section shows our contribution to proving the conjecture.
In this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
In Automatic Speech Recognition (ASR) the non-linear data projection provided by a one hidden layer Multilayer Perceptron (MLP), trained to recognize phonemes, and has previous experiments to provide feature enhancement substantially increased ASR performance, especially in noise. Previous attempts to apply an analogous approach to speaker identification have not succeeded in improving performance, except by combining MLP processed features with other features. We present test results for the TIMIT database which show that the advantage of MLP preprocessing for open set speaker identification increases with the number of speakers used to train the MLP and that improved identification is obtained as this number increases beyond sixty.
... Show More