Helminthiasis is a significant economic burden on grazing cattle. Increased resistance to currently available synthetic anthelmintics used to treat helminthiasis, and anthelmintic residues in meat and dairy products pose a significant worldwide health threat. These obstacles require the development of new anthelmintics capable of combating drug resistance while also exhibiting improved safety profiles. Rhynchosia cana (Fabaceae) is a herb that has historically been used as a worm expeller. To evaluate the phytochemical profile and explore the anti-oxidant and anthelmintic effects of different extracts of Rhynchosia cana (R. cana) by In silico and In vitro methods. Using standardised chemical tests as defined in the literature, phytochemical research was carried out. Using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Hydrogen peroxide (H2O2) radicals scavenging assay, In vitro free radical scavenging behaviour of different extracts was quantitatively estimated, whereas In-vitro anthelmintic activity was measured against Pheretima posthuma (P. posthuma) (Annelida). The molecular docking analysis was then carried out to establish compounds with good efficiency for anti-oxidant activity against the catalase, superoxide dismutase, glutathione-S-transferase, glutathione reductase, glutathione peroxidase and tubulin-colchicine enzyme for anthelmintic activity. Furthermore, ADME/T profiles have been tested by ADMET SAR. The various extracts of R cana potentially inhibited the reactive oxygen species (ROS) and possessed anti-oxidant activity. In anti-oxidant assays, the IC50 values ranged from 62.08 to 440.08 μg/mL for PERC, EARC, and MERC. All the extracts demonstrated anthelmintic behaviour on P. posthuma that was dose-dependent and statistically relevant. On the other side, molecular docking analysis reveals that Gallocatechin has the best fitness score of -7.1 kcal/mol with tubulin-colchicine enzyme; Rhynchosin, Luteolin-3',4'-dimethyl ether, Isoorientin and Orientin has the best fitness scores with different targets related to the oxidation process. In addition, all compounds were in the array of expected properties to fulfil the Lipinski law of five to be accepted as drug-like potential. The observation indicates that the R. cana possesses anti-oxidant and anthelmintic activity In vitro and In silico assays. However, further research was needed to elucidate their primary molecular mechanism of action, safety, toxicity, and bioavailability.
In this paper a prey - predator model with harvesting on predator species with infectious disease in prey population only has been proposed and analyzed. Further, in this model, Holling type-IV functional response for the predation of susceptible prey and Lotka-Volterra functional response for the predation of infected prey as well as linear incidence rate for describing the transition of disease are used. Our aim is to study the effect of harvesting and disease on the dynamics of this model.
Hypothesis CO2 geological storage (CGS) involves different mechanisms which can store millions of tonnes of CO2 per year in depleted hydrocarbon reservoirs and deep saline aquifers. But their storage capacity is influenced by the presence of different carboxylic compounds in the reservoir. These molecules strongly affect the water wetness of the rock, which has a dramatic impact on storage capacities and containment security. However, precise understanding of how these carboxylic acids influence the rock’s CO2-wettability is lacking. Experiments We thus systematically analysed these relationships as a function of pressure, temperature, storage depth and organic acid concentrations. A particular focus was on identifying organic acid conce
... Show MoreFor more than a decade, externally bonded carbon fiber reinforced polymer (CFRP) composites successfully utilized in retrofitting reinforced concrete structural elements. The function of CFRP reinforcement in increasing the ductility of reinforced concrete (RC) beam is essential in such members. Flexural and shear behaviors, ductility, and confinement were the main studied properties that used the CFRP as a strengthening material. However, limited attention has been paid to investigate the energy absorption of torsion strengthening of concrete members, especially two-span concrete beams. Hence, the target of this work is to investigate the effectiveness of CFRP-strengthening technique with regard to energy absorption of two-span RC
... Show MoreGlass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load
... Show MoreRapid worldwide urbanization and drastic population growth have increased the demand for new road construction, which will cause a substantial amount of natural resources such as aggregates to be consumed. The use of recycled concrete aggregate could be one of the possible ways to offset the aggregate shortage problem and reduce environmental pollution. This paper reports an experimental study of unbound granular material using recycled concrete aggregate for pavement subbase construction. Five percentages of recycled concrete aggregate obtained from two different sources with an originally designed compressive strength of 20–30 MPa as well as 31–40 MPa at three particle size levels, i.e., coarse, fine, and extra fine, were test
... Show MoreIn the current study, synthesis and characterization of silver nanoparticles (AgNPs) before and after functionalization with ampicillin antibiotic and their application as anti-pathogenic agents towards bacteria were investigated. AgNPs were synthesized by a green method from AgNO3 solution with glucose subjected to microwave radiation. Characterization of the nanoparticles was conducted using UV-Vis spectroscopy, scanning electron microscopy (SEM), zeta potential determination and Fourier transform infrared (FTIR) spectroscopy. From SEM analysis, the typical silver nanoparticle particle size was found to be 30 nm and Zeta potential measurements gave information about particle stability. Analysis of FTIR patterns and UV-VIS spectroscopy con
... Show MoreGreen synthesis methods have emerged as favorable techniques for the synthesis of nano-oxides due to their simplicity, cost-effectiveness, eco-friendliness, and non-toxicity. In this study, Nickel oxide nanoparticles (NiO-NPs) were synthesized using the aqueous extract of Laurus nobilis leaves as a natural capping agent. The synthesized NiO-NPs were employed as an adsorbent for the removal of Biebrich Scarlet (BS) dye from aqueous solution using adsorption technique. Comprehensive characterization of NiO-NPs was performed using various techniques such as atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett and Teller (BET) analysis, and scanning electron microscopy (SEM). Additionally, o
... Show More