In folk medicine there are various medicinal amalgamation possessing hepatoprotective activity. This activity is of significance because several toxins cause liver injury. Hence, many pharmaceutical companies are targeting herbal medicines for the treatment of liver abnormalities and towards evolving a safe and effective formulation with desired route of administration. In current review we have focused on the studies showing hepatoprotective effect using marine compounds and plant derived compounds. Liver disorder, a global health problem, usually include acute or chronic hepatitis, heptoses, and cirrhosis. It may be due to toxic chemicals and certain antibiotics. Uncontrolled consumption of alcohol also affects liver in an unhealthy way. To cure liver disorders several formulations of medicinal plants are being used. It is observed that hepatoprotective effect of plant is mostly due to flavonoids, alkaloids, terpenoids, steroids, and glycoside. A single drug cannot be useful for all the types of liver disorders. Several plant extracts for liver illness results from poisonous chemicals, viruses, extra alcohol consumption, and repeated administration of medication. By using standards of protection and efficacy, manufacture of plant products need to be ruled out. Current review provides an understanding of ethnopharmocology, toxicology of several medicinal plants manifesting hepatoprotective potential. Despite of varied database analysis new discoveries and their probabilities, evidences on viral hepatitis treatment or liver cirrhosis is inadequate. Further information about phytotherapy, toxicology, quality control studies shall be endorsed. Further in depth studies are required to discover quality trait like SAR, MOA, safety and toxicity and therapeutic potential of phytoconstituents in clinical settings.
The increased size of grayscale images or upscale plays a central role in various fields such as medicine, satellite imagery, and photography. This paper presents a technique for improving upscaling gray images using a new mixing wavelet generation by tensor product. The proposed technique employs a multi-resolution analysis provided by a new mixing wavelet transform algorithm to decompose the input image into different frequency components. After processing, the low-resolution input image is effectively transformed into a higher-resolution representation by adding a zeroes matrix. Discrete wavelets transform (Daubechies wavelet Haar) as a 2D matrix is used but is mixed using tensor product with another wavelet matrix’s size. MATLAB R2021
... Show MoreImage quality plays a vital role in improving and assessing image compression performance. Image compression represents big image data to a new image with a smaller size suitable for storage and transmission. This paper aims to evaluate the implementation of the hybrid techniques-based tensor product mixed transform. Compression and quality metrics such as compression-ratio (CR), rate-distortion (RD), peak signal-to-noise ratio (PSNR), and Structural Content (SC) are utilized for evaluating the hybrid techniques. Then, a comparison between techniques is achieved according to these metrics to estimate the best technique. The main contribution is to improve the hybrid techniques. The proposed hybrid techniques are consisting of discrete wavel
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreVoting is one of the most fundamental components of a democratic society. In 2021 Iraq held the Council of Representatives (CoR) elections in 83 electoral constituencies in 19 governorates. Nonetheless, several significant issues arose during this election, including the problem of logistics distribution, the excessively long period of ballot counting, voters can't know if their votes were counted or if their ballots were tampered with, and the inconsistent regulation of vote counting. Blockchain technology, which was just invented, may offer a solution to these problems. This paper introduces an electronic voting system for the Iraq Council of Representatives elections that is based on a prototype of the permission hyperledger fabr
... Show MoreIn modern technology, the ownership of electronic data is the key to securing their privacy and identity from any trace or interference. Therefore, a new identity management system called Digital Identity Management, implemented throughout recent years, acts as a holder of the identity data to maintain the holder’s privacy and prevent identity theft. Therefore, an overwhelming number of users have two major problems, users who own data and third-party applications will handle it, and users who have no ownership of their data. Maintaining these identities will be a challenge these days. This paper proposes a system that solves the problem using blockchain technology for Digital Identity Management systems. Blockchain is a powerful techniqu
... Show MoreThe development of Web 2.0 has improved people's ability to share their opinions. These opinions serve as an important piece of knowledge for other reviewers. To figure out what the opinions is all about, an automatic system of analysis is needed. Aspect-based sentiment analysis is the most important research topic conducted to extract reviewers-opinions about certain attribute, for instance opinion-target (aspect). In aspect-based tasks, the identification of the implicit aspect such as aspects implicitly implied in a review, is the most challenging task to accomplish. However, this paper strives to identify the implicit aspects based on hierarchical algorithm incorporated with common-sense knowledge by means of dimensionality reduction.
Copula modeling is widely used in modern statistics. The boundary bias problem is one of the problems faced when estimating by nonparametric methods, as kernel estimators are the most common in nonparametric estimation. In this paper, the copula density function was estimated using the probit transformation nonparametric method in order to get rid of the boundary bias problem that the kernel estimators suffer from. Using simulation for three nonparametric methods to estimate the copula density function and we proposed a new method that is better than the rest of the methods by five types of copulas with different sample sizes and different levels of correlation between the copula variables and the different parameters for the function. The
... Show MoreAbstract
The objective of image fusion is to merge multiple sources of images together in such a way that the final representation contains higher amount of useful information than any input one.. In this paper, a weighted average fusion method is proposed. It depends on using weights that are extracted from source images using counterlet transform. The extraction method is done by making the approximated transformed coefficients equal to zero, then taking the inverse counterlet transform to get the details of the images to be fused. The performance of the proposed algorithm has been verified on several grey scale and color test images, and compared with some present methods.
... Show More