In recent years, observed focus greatly on gold nanoparticles synthesis due to its unique properties and tremendous applicability. In most of these researches, the citrate reduction method has been adopted. The aim of this study was to prepare and optimize monodisperse ultrafine particles by addition of reducing agent to gold salt, as a result of seed mediated growth mechanism. In this research, gold nanoparticles suspension (G) was prepared by traditional standard Turkevich method and optimized by studying different variables such as reactants concentrations, preparation temperature and stirring rate on controlling size and uniformity of nanoparticles through preparing twenty formulas (G1-G20). Subsequently, the selected formula that prepared from the best tested condition was further optimized by preparing it using inverse method via the addition of gold salt to the reducing agent in opposite to the previous traditional method (G21). The optimized gold nanoparticles were characterized by SEM, EDX, TEM and zeta potential. The obtained results indicated that (G21) with reactants concentrations of 0.5mM and 10mM for HAuCl4.3H2O and trisodium citrate dihydrate respectively, 65°C of preparation temperature and 1500rpm of stirring rate was chosen as an optimized formula according to AFM provided gold nanoparticles with smoother surface, smaller size (average 8.75nm) with more uniform size distribution (7.32%) as well as short over all preparation time (27minutes). In addition to that all results of SEM, EDX and TEM indicated uniform spherical shape with zeta potential of -47.87. In conclusion, inversed method is promising for the preparation of gold nanoparticles with high monodispersity.
At the level of both individuals and companies, Wireless Sensor Networks (WSNs) get a wide range of applications and uses. Sensors are used in a wide range of industries, including agriculture, transportation, health, and many more. Many technologies, such as wireless communication protocols, the Internet of Things, cloud computing, mobile computing, and other emerging technologies, are connected to the usage of sensors. In many circumstances, this contact necessitates the transmission of crucial data, necessitating the need to protect that data from potential threats. However, as the WSN components often have constrained computation and power capabilities, protecting the communication in WSNs comes at a significant performance pena
... Show MoreThe electrical performance of bottom-gate/top source-drain contact for p-channel organic field-effect transistors (OFETs) using poly(3-hexylthiophene) (P3HT) as an active semiconductor layer with two different gate dielectric materials, Polyvinylpyrrolidone (PVP) and Hafnium oxide (HfO2), is investigated in this work. The output and transfer characteristics were studied for HfO2, PVP and HfO2/PVP as organic gate insulator layer. Both characteristics show a high drain current at the gate dielectric HfO2/PVP equal to -0.0031A and -0.0015A for output and transfer characteristics respectively, this can be attributed to the increasing of the dielectric capacitance. Transcondactance characteristics also studied for the three organic mater
... Show MoreThe unconventional techniques called “the quick look techniques”, have been developed to present well log data calculations, so that they may be scanned easily to identify the zones that warrant a more detailed analysis, these techniques have been generated by service companies at the well site which are among the useful, they provide the elements of information needed for making decisions quickly when time is of essence. The techniques used in this paper are:
- Apparent resistivity Rwa
- Rxo /Rt
The above two methods had been used to evaluate Nasiriyah oil field formations (well-NS-3) to discover the hydrocarbon bearing formations. A compu
... Show MoreSustainable plant protection and the economy of plant crops worldwide depend heavily on the health of agriculture. In the modern world, one of the main factors influencing economic growth is the quality of agricultural produce. The need for future crop protection and production is growing as disease-affected plants have caused considerable agricultural losses in several crop categories. The crop yield must be increased while preserving food quality and security and having the most negligible negative environmental impact. To overcome these obstacles, early discovery of satisfactory plants is critical. The use of Advances in Intelligent Systems and information computer science effectively helps find more efficient and low-cost solutions. Thi
... Show MorePhotonic crystal fiber interferometers are widely used for sensing applications. In this work, solid core-Photonic crystal fiber based on Mach-Zehnder modal interferometer for sensing refractive index was presented. The general structure of sensor applied by splicing short lengths of PCF in both sides with conventional single mode fiber (SMF-28). To apply modal interferometer theory; collapsing technique based on fusion splicing used to excite higher order modes (LP01 and LP11). Laser diode (1550 nm) has been used as a pump light source. Where a high sensitive optical spectrum analyzer (OSA) was used to monitor and record the transmitted. The experimental work shows that the interference spectrum of Photonic crystal fiber interferometer
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreNatural dye sensitized solar cell was prepared using strawberry and pomegranate dyes with anatase nanocrystalline titanium dioxide powder. A study of the optical properties of the two dyes, involving the absorption spectrum was determined in the visible region. I-V characteristics under illumination were performed. The results showed that the two prepared dye sensitized solar cells have acceptable values efficiency about (0.94 with Fill factor (45)) and (0.74 with Fill factor (44)) for strawberry and pomegranate dyes, respectively.