Docetaxel is an effective treatment approved for many types of cancers, but its effectiveness in clinical practice can be compromised by significant occurrence of adverse drug reactions. The aim of the current study was to measure the distribution of adverse drug reactions of docetaxel reported in Iraq and to assess the causality, severity, seriousness, preventability, expectedness and outcome of these adverse reactions. A retrospective study conducted on individual case safety reports from the Iraqi Pharmacovigilance Center / Ministry of Health. The study included 118 individual case safety report containing 236 adverse drug reactions.
Most of the adverse drug reactions were related to skin and subcutaneous tissue disorders(26.7%), followed by respiratory, thoracic and mediastinal disorders (20.8%), gastrointestinal disorders (17.4%) and general disorders and administration site conditions (10.6%). The majority of these reactions with possible causality (68.6%), moderate severity (75.4%), expected (80.5%), possibly preventable (93.2%), and serious (80.5%). In addition the most common outcome of adverse drug reactions was recovered / resolved (46.19%).
Merging biometrics with cryptography has become more familiar and a great scientific field was born for researchers. Biometrics adds distinctive property to the security systems, due biometrics is unique and individual features for every person. In this study, a new method is presented for ciphering data based on fingerprint features. This research is done by addressing plaintext message based on positions of extracted minutiae from fingerprint into a generated random text file regardless the size of data. The proposed method can be explained in three scenarios. In the first scenario the message was used inside random text directly at positions of minutiae in the second scenario the message was encrypted with a choosen word before ciphering
... Show MoreThe investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o
... Show MoreThis study aims to enhance the RC5 algorithm to improve encryption and decryption speeds in devices with limited power and memory resources. These resource-constrained applications, which range in size from wearables and smart cards to microscopic sensors, frequently function in settings where traditional cryptographic techniques because of their high computational overhead and memory requirements are impracticable. The Enhanced RC5 (ERC5) algorithm integrates the PKCS#7 padding method to effectively adapt to various data sizes. Empirical investigation reveals significant improvements in encryption speed with ERC5, ranging from 50.90% to 64.18% for audio files and 46.97% to 56.84% for image files, depending on file size. A substanti
... Show MoreEmotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreSkull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither no
... Show MoreFor businesses that provide delivery services, the efficiency of the delivery process in terms of punctuality is very important. In addition to increasing customer trust, efficient route management, and selection are required to reduce vehicle fuel costs and expedite delivery. Some small and medium businesses still use conventional methods to manage delivery routes. Decisions to manage delivery schedules and routes do not use any specific methods to expedite the delivery settlement process. This process is inefficient, takes a long time, increases costs and is prone to errors. Therefore, the Dijkstra algorithm has been used to improve the delivery management process. A delivery management system was developed to help managers and drivers
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreNutrient enrichment of Sawa lake water was made using different nitrogen and phosphorus concentrations during autumn and spring at three stations. Different concentrations of nitrogen, phosphorus and N: P ratios were used to test variations in phytoplankton population dynamics. Nitrogen at a concentration of 25 µmole.l-1 and N: P ratio of 10:1 gave highest phytoplankton cell number at all stations and seasons. A total of 64 algal taxa dominated by Bacillariophyceae followed by Cyanophyceae and Chlorophyceae were identified. The values of Shannon index of diversity were more than one in the studied stations.
An experimental study was performed to estimate the forced convection heat transfer performance and the pressure drop of a single layer graphene (GNPs) based DI-water nanofluid in a circular tube under a laminar flow and a uniform heat flux boundary conditions. The viscosity and thermal conductivity of nanofluid at weight concentrations of (0.1 to 1 wt%) were measured. The effects of the velocity of flow, heat flux and nanoparticle weight concentrations on the enhancement of the heat transfer are examined. The Nusselt number of the GNPs nanofluid was enhanced as the heat flux and the velocity of flow rate increased, and the maximum Nusselt number ratio (Nu nanofluid/ Nu base fluid) and thermal performance factor
... Show More