Nano-structural of vanadium pentoxide (V2O5) thin films were
deposited by chemical spray pyrolysis technique (CSPT). Nd and Ce
doped vanadium oxide films were prepared, adding Neodymium
chloride (NdCl3) and ceric sulfate (Ce(SO4)2) of 3% in separate
solution. These precursor solutions were used to deposit un-doped
V2O5 and doped with Nd and Ce films on the p-type Si (111) and
glass substrate at 250°C. The structural, optical and electrical
properties were investigated. The X-ray diffraction study revealed a
polycrystalline nature of the orthorhombic structure with the
preferred orientation of (010) with nano-grains. Atomic force
microscopy (AFM) was used to characterize the morphology of the
films. Un-do
Generally the a.c. conductivity shows a power law in frequency s () where the exponent s ≤ 1. As the frequency goes to zero the conductivity become frequency independent. The a.c. conductivity was studied for the Ge1-xSex thin films to see how the selenium contents affect the permittivity and the permeability for the Ge1-x Sex. The thin films prepared by thermal evaporation at room temperature and under vacuum (~2 x10-5toor) using Edward coating unit model 306A. From the relation between ln conductivity and ln w, the effect of selenium contents in Ge1-x Sex thin films on the exponent value, the relaxation time and the maximum barrier height. An algebric fitting method for circles and circular arcs was used to find the permit
... Show MoreCdS films were prepared by thermal evaporation technique at thickness 1 µm on glass substrates and these films were doped with indium (3%) by thermal diffusion method. The electrical properties of these have been investigated in the range of diffusion temperature (473-623 K)> Activation energy is increased with diffusion temperature unless at 623 K activation energy had been decreased. Hall effect results have shown that all the films n-type except at 573 and 623 K and with increase diffusion temperature both of concentration and mobility carriers were increased.
ABSTRACT:In this paper, Cd10–xZnxS (x = 0.1, 0.3, 0.5) films were deposited by using chemical spray pyrolysis technique, the molar concentration precursor solution was 0.15 M/L. Depositions were done at 350°C on cleaned glass substrates. X-ray dif- fraction technique (XRD) studies for all the prepared film; all the films are crystalline with hexagonal structure .The optical properties of the prepared films were studied using measurements from VIS-UV-IR spectrophotometer at wave- length with the range 300 - 900 nm; the average transmission of the minimum doping ratio (Zn at 0.1%) was about 55% in the VIS region, it was decrease at the increasing of Zn concentration in the CdS films, The band gap of the doped CdS films was varied as 3.7, 3
... Show MoreObjective: In this study ,the effects of silver nanoparticles (Ag NPs)were investigated on the liver and kidney tissues. Methodology: The produced nanoparticles have an average particle size of about 30 nm. Eighteen male albino rats were used by dividing them into three groups, each group comprise 6 rats. First group(control group) given food and water like other groups by liberty. Second group was tail injected by (AgNPs) at dose of (0.4 mg/kg. body weight/day). Third group was injected by (AgNPs) at dose of (0.6 mg/kg. body weight/day) for 15 days. All animals were sacrified at the end of experiment. The liver and kidney tissues specimens were fixed in 10% formalin and histological preparations were carried out then stained with H&E. Path
... Show MoreQ-switch Nd: YAG laser of wavelengths 235nm and 1,460nm with energy in the range 0.2 J to 1J and 1Hz repetition rate was employed to synthesis Ag/Au (core/shell) nanoparticles (NPs) using pulse laser ablation in water. In this synthesis, initially the silver nano-colloid prepared via ablation target, this ablation related to Au target at various energies to creat Ag/Au NPs. Surface Plasmon Resonance (SPR), surface morphology and average particle size identified employing: UV-visible spectrophotometer, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The absorbance spectra of Ag NPs and Ag/Au NPs showed sharp and single peaks around 400nm and 410nm, respec
Undoped and Co-doped zinc oxide (CZO) thin films have been prepared by spray pyrolysis technique using solution of zinc acetate and cobalt chloride. The effect of Co dopants on structural and optical properties has been investigated. The films were found to exhibit maximum transmittance (~90%) and low absorbance. The structural properties of the deposited films were examined by x-ray diffraction (XRD). These films, deposited on glass substrates at (400? C), have a polycrystalline texture with a wurtzite hexagonal structure, and the grain size was decreased with increasing Co concentration, and no change was observed in lattice constants while the optical band gap decreased from (3.18-3.02) eV for direct allowed transition. Other parameters
... Show MoreStructural and optical properties of CdO and CdO0.99Cu0.01 thin
films were prepared in this work. Cadmium Oxide (CdO) and
CdO0.99Cu0.01semiconducting films are deposited on glass substrates
by using pulsed laser deposition method (PLD) using SHG with Qswitched
Nd:YAG pulsed laser operation at 1064nm in 6x10-2 mbar
vacuum condition and frequency 6 Hz. CdO and CdO0.99Cu0.01 thin
films annealed at 550 C̊ for 12 min. The crystalline structure was
studied by X-ray diffraction (XRD) method and atomic force
microscope (AFM). It shows that the films are polycrystalline.
Optical properties of thin films were analyzed. The direct band gap
energy of CdO and CdO0.99Cu0.01 thin films were determined from
(αhυ)1/2 v