The main part in hydraulic system is directional control valve. Directional control valve has complex construction such as moving spool to control the direction of actuator for required speed. Magneto-rheological (MR) fluid is one of controllable fluids. Utilizing the MR fluid properties, direct interface can be realized between magnetic field and fluid power without the need for moving parts like spool in directional control valves. This study proposes the design of four ways/three position MR proportional directional control valve (4/3 MR valve). The construction of valve and the principle of work are presented. Analysis for magnetic circuit and simulation for valve performance were done. The experiment was conducted to show the principle work of the valve functionally. Design and finite elements analysis using FEMM software of the MR valves were done to reach the optimal design. The valve works proportionally to control the direction and speed of hydraulic actuators. As the result, the optimal design of the valve achieved the optimum performance. The experimental result demonstrates the operation of 4/3 MR valve in 12 configurations. The 4/3 MR valve can replace many types of the spool directional control valve for controlling hydraulic actuator.
This paper is focused on orthogonal function approximation technique FAT-based adaptive backstepping control of a geared DC motor coupled with a rotational mechanical component. It is assumed that all parameters of the actuator are unknown including the torque-current constant (i.e., unknown input coefficient) and hence a control system with three motor control modes is proposed: 1) motor torque control mode, 2) motor current control mode, and 3) motor voltage control mode. The proposed control algorithm is a powerful tool to control a dynamic system with an unknown input coefficient. Each uncertain parameter/term is represented by a linear combination of weighting and orthogonal basis function vectors. Chebyshev polynomial is used
... Show MoreIn this paper, an adaptive active disturbance rejection control is newly designed for precise angular steering position tracking of the uncertain and nonlinear SBW system with time delay communications. The proposed adaptive active disturbance rejection control comprises the following two elements: (1) An adaptive extended state observer and (2) an adaptive state error feedback controller. The adaptive extended state observer with adaptive gains is employed for estimating the unmeasured velocity, acceleration, and compound disturbance which consists of system parameter uncertainties, nonlinearities, exterior disturbances, and time delay in which the observer gains are dynamically adjusted based on the estimation error to enhance est
... Show MoreCurrently, there is an intensive development of bipedal walking robots. The most known solutions are based on the use of the principles of human gait created in nature during evolution. Modernbipedal robots are also based on the locomotion manners of birds. This review presents the current state of the art of bipedal walking robots based on natural bipedal movements (human and bird) as well as on innovative synthetic solutions. Firstly, an overview of the scientific analysis of human gait is provided as a basis for the design of bipedal robots. The full human gait cycle that consists of two main phases is analysed and the attention is paid to the problem of balance and stability, especially in the single support phase when the biped
... Show MoreThe control of an aerial flexible joint robot (FJR) manipulator system with underactuation is a difficult task due to unavoidable factors, including, coupling, underactuation, nonlinearities, unmodeled uncertainties, and unpredictable external disturbances. To mitigate those issues, a new robust fixed-time sliding mode control (FxTSMC) is proposed by using a fixed-time sliding mode observer (FxTSMO) for the trajectory tracking problem of the FJR attached to the drones system. First, the underactuated FJR is comprehensively modeled and converted to a canonical model by employing two state transformations for ease of the control design. Then, based on the availability of the measured states, a cascaded FxTSMO (CFxTSMO) is constructed to estim
... Show MoreIn every country in the world, there are a number of amputees who have been exposed to some accidents that led to the loss of their upper limbs. The aim of this study is to suggest a system for real-time classification of five classes of shoulder girdle motions for high-level upper limb amputees using a pattern recognition system. In the suggested system, the wavelet transform was utilized for feature extraction, and the extreme learning machine was used as a classifier. The system was tested on four intact-limbed subjects and one amputee, with eight channels involving five electromyography channels and three-axis accelerometer sensor. The study shows that the suggested pattern recognition system has the ability to classify the sho
... Show MoreThis study was conducted in the College of Agriculture fields /University of Baghdad, during Autumn 2013. This study was aimed to examine the mortality rate on the all black fly stages of Acaudalerodes rachipora Singh) by the biotic fungus Beuveria bassiana. The results of a preliminary survey showed that the samples of Ziziphus spaina christi were infested by blakflies in Agriculture collage during Autumn seasons of 2013 , the presence of species of black flies A. rachipora on the lower surface of the leaf, the study aimed to study and research the effects of fungus B. bassiana on black fly A. rachipora. After six days of treatment results showed the continued superiority 106 spore / ml trends in the western, southern and
... Show MoreBackground:Measurement of hemoglobin A1c (A1C) is a renowned tactic for gauging long-term glycemic control, and exemplifies an outstanding influence to the quality of care in diabetic patients.The concept of targets is open to criticism; they may be unattainable, or limit what could be attained, and in addition they may be economically difficult to attain. However, without some form of targeted control of an asymptomatic condition it becomes difficult to promote care at allObjectives: The present article aims to address the most recent evidence-based global guidelines of A1C targets intended for glycemic control in Type 2 Diabetes Mellitus (T2D).Key messages:Rationale for Treatment Targets of A1C includesevidence for microvascular and ma
... Show More
This work focuses on the implementation of interfaces for human machine interaction (HMI) for control and monitor of automatic production line. The automatic production line which can performance feeding, transportation, sorting functions.
The objectives of this work are implemented two SCADA/HMI system using two different software. TIA portal software was used to build HMI, alarm, and trends in touch panel which are helped the operator to control and monitor the production line. LabVIEW software was used to build HMI and trends on the computer screen and was linked with Micros
... Show More