<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC). Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>
Standardized uptake values, often known as SUVs, are frequently utilized in the process of measuring 18F-fluorodeoxyglucose (FDG) uptake in malignancies . In this work, we investigated the relationships between a wide range of parameters and the standardized uptake values (SUV) found in the liver. Examinations with 18F-FDG PET/CT were performed on a total of 59 patients who were suffering from liver cancer. We determined the SUV in the liver of patients who had a normal BMI (between 18.5 and 24.9) and a high BMI (above 30) obese. After adjusting each SUV based on the results of the body mass index (BMI) and body surface area (BSA) calculations, which were determined for each patient based on their height and weight. Under a variety of dif
... Show MorePhysical measurements are one of the basic factors that affect the performance of the goalkeeper, especially when confronting fixed kicks that require special skills such as the reaction and accuracy in concentration, and with technological development artificial intelligence has become an effective tool for analyzing mathematical data that is difficult to discover in traditional methods The study aims to employ techniques Artificial intelligence to study the relationship between physical measurements and the accuracy of confronting the fixed kicks of goalkeepers in football. This study will contribute to providing a deeper understanding of physical factors that affect the performance of goalkeepers, in addition to designing dedicat
... Show MoreThe influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show MoreThe pancreatic ductal adenocarcinoma (PDAC), which represents over 90% of pancreatic cancer cases,
has the highest proliferative and metastatic rate in comparison to other pancreatic cancer compartments. This
study is designed to determine whether small nucleolar RNA, H/ACA box 64 (snoRNA64) is associated with
pancreatic cancer initiation and progression. Gene expression data from the Gene Expression Omnibus (GEO)
repository have shown that snoRNA64 expression is reduced in primary and metastatic pancreatic cancer as
compared to normal tissues based on statistical analysis of the in Silico analysis. Using qPCR techniques,
pancreatic cancer cell lines include PK-1, PK-8, PK-4, and Mia PaCa-2 with differ
Effective management of advanced cancer requires systemic treatment including small molecules that target unique features of aggressive tumor cells. At the same time, tumors are heterogeneous and current evidence suggests that a subpopulation of tumor cells, called tumor initiating or cancer stem cells, are responsible for metastatic dissemination, tumor relapse and possibly drug resistance. Classical apoptotic drugs are less effective against this critical subpopulation. In the course of generating a library of open-chain epothilones, we discovered a new class of small molecule anticancer agents that has no effect on tubulin but instead kills selected cancer cell lines by harnessing reactive oxygen
Two different composite materials were prepared by stir casting method of AA 6061 alloy as a matrix reinforced with two addition different ceramic materials Al2O3 and B4C of grain size 20 µm by 2.5, 5, 7.5 and10% in weight. The composite material with aluminum alloy as a matrix possesses a unique mechanical properties such as: high specific strength and hardness, low density, and high resistance to corrosion and friction wear. This composite is widely used in automotive parts space and marine applications.
Pin-on-disc technique was used to calculate the wear rate for each addition of Al2O3 and B4C particles. Rockwell hardness test and
... Show More