<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC). Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>
Phase change materials are known to be good in use in latent heat thermal energy storage (LHTES) systems, but one of their drawbacks is the slow melting and solidification processes. So that, in this work, enhancing heat transfer of phase change material is studied experimentally for in charging and discharging processes by the addition of high thermal conductive material such as copper in the form of brushes, which were added in both PCM and air sides. The additions of brushes have been carried out with different void fractions (97%, 94% and 90%) and the effect of four different air velocities was tested. The results indicate that the minimum brush void fraction gave the maximum heat transfer in PCM and reduced the time
... Show MoreIn this work, a comparative analysis for the behavior and pattern of the variations of the IF2 and T Ionospheric indices was conducted for the minimum and maximum years of solar cycles 23 and 24. Also, the correlative relationship between the two ionospheric indices was examined for the seasonal periods spanning from August 1996 to November 2008 for solar cycle 23 and from December 2008 to November 2019 for solar cycle 24. Statistical calculations were performed to compare predicted values with observed values for the selected indices during the tested timeframes. The study's findings revealed that the behavior of the examined indices exhibited almost similar variations throughout the studied timeframe. The seasonal variations were
... Show MoreCervical Uterine Cancer is a disease that explains the vulnerability in which women are in terms of reproductive health with an impact on occupational health and public health, even when in Mexico the prevalence rate is lower than the other member countries of the OECD, its impact on Human Development and Local Development shows the importance that the disease have in communities more than in cities where prevention policies through check-ups and medical examinations seem to curb the trend, but show the lack of opportunities and capacities of health centers in rural areas. To establish the reliability, validity, and correlations between the variables reported in the literature with respect to their weighting in a public hospital. A
... Show MoreBackground: Colorectal cancer is the third most common cancer-related mortality worldwide, and its prevalence is increasing among many nations. Aim of the study: Investigate the predictive value of carbohydrate antigen 242 (CA242) in comparison to the CEA biomarker and to estimate the significance of CA242 as prognosis maker in colorectal cancer patients. Methods: a case-control study with a total of 150 individuals, 100 patients (59 males, 41 females) and 50 healthy controls (26 males, 24 females). using an enzyme-linked immunosorbent (ELISA) to determine the serum levels of CA242 and CEA. The study was carried out at the gastroenterology consultation clinic of the oncology teaching hospital between November 2020 and February
... Show MoreFace Recognition Systems (FRS) are increasingly targeted by morphing attacks, where facial features of multiple individuals are blended into a synthetic image to deceive biometric verification. This paper proposes an enhanced Siamese Neural Network (SNN)-based system for robust morph detection. The methodology involves four stages. First, a dataset of real and morphed images is generated using StyleGAN, producing high-quality facial images. Second, facial regions are extracted using Faster Region-based Convolutional Neural Networks (R-CNN) to isolate relevant features and eliminate background noise. Third, a Local Binary Pattern-Convolutional Neural Network (LBP-CNN) is used to build a baseline FRS and assess its susceptibility to d
... Show MoreThe uptake of Cd(II) ions from simulated wastewater onto olive pips was modeled using artificial neural network (ANN) which consisted of three layers. Based on 112 batch experiments, the effect of contact time (10-240 min), initial pH (2-6), initial concentration (25-250 mg/l), biosorbent dosage (0.05-2 g/100 ml), agitation speed (0-250 rpm) and temperature (20-60ºC) were studied. The maximum uptake (=92 %) of Cd(II) was achieved at optimum parameters of 60 min, 6, 50 mg/l, 1 g/100 ml, 250 rpm and 25ºC respectively.
Tangent sigmoid and linear transfer functions of ANN for hidden and output layers respectively with 7 neurons were sufficient to present good predictions for cadmium removal efficiency with coefficient of correlatio
... Show MoreThis research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa
... Show MoreAbstract:
Research Topic: Ruling on the sale of big data
Its objectives: a statement of what it is, importance, source and governance.
The methodology of the curriculum is inductive, comparative and critical
One of the most important results: it is not permissible to attack it and it is a valuable money, and it is permissible to sell big data as long as it does not contain data to users who are not satisfied with selling it
Recommendation: Follow-up of studies dealing with the provisions of the issue
Subject Terms
Judgment, Sale, Data, Mega, Sayings, Jurists