<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver operating characteristic ROC). Dataset was downloaded from UCI ml repository; it is composed of 9 attributes and 699 samples. The findings are clearly showing that the RBF NN classifier is the best in prediction of the type of breast tumors since it had recorded the highest performance in terms of correct classification rate (accuracy), sensitivity, specificity, and AUC (area under Receiver Operating Characteristic ROC) among all other models.</p>
Background:sThe aims of this study were to evaluate and compare the ability of three different techniques to obdurate simulated lateral canals, evaluate the effect of the main canal curvature on obturation of lateral canals and compare the gutta-percha penetration between coronal and apical lateral canals. Materials and methods: Resin blocks with 30 straight and 30 curved were used in this study. Each canal has two parallel lateral canals. The main canal has 0.3 mm apical diameter and 0.04 taper. The canals were divided into six groups according to canal curvature and obturation techniques used (n=10): Groups C1 and C2: straight and curved canals obturated with continuous wave technique using E&Q masterTM system. Groups O1 and O2: straight
... Show MoreKE Sharquie, HR Al-Hamamy, AA Noaimi, AF Tahir, Journal of Cosmetics, Dermatological Sciences and Applications, 2012 - Cited by 2
Lung cancer is the most common dangerous disease that, if treated late, can lead to death. It is more likely to be treated if successfully discovered at an early stage before it worsens. Distinguishing the size, shape, and location of lymphatic nodes can identify the spread of the disease around these nodes. Thus, identifying lung cancer at the early stage is remarkably helpful for doctors. Lung cancer can be diagnosed successfully by expert doctors; however, their limited experience may lead to misdiagnosis and cause medical issues in patients. In the line of computer-assisted systems, many methods and strategies can be used to predict the cancer malignancy level that plays a significant role to provide precise abnormality detectio
... Show MoreAbstract
Characterized by the Ordinary Least Squares (OLS) on Maximum Likelihood for the greatest possible way that the exact moments are known , which means that it can be found, while the other method they are unknown, but approximations to their biases correct to 0(n-1) can be obtained by standard methods. In our research expressions for approximations to the biases of the ML estimators (the regression coefficients and scale parameter) for linear (type 1) Extreme Value Regression Model for Largest Values are presented by using the advanced approach depends on finding the first derivative, second and third.
Hepatitis is one of the diseases that has become more developed in recent years in terms of the high number of infections. Hepatitis causes inflammation that destroys liver cells, and it occurs as a result of viruses, bacteria, blood transfusions, and others. There are five types of hepatitis viruses, which are (A, B, C, D, E) according to their severity. The disease varies by type. Accurate and early diagnosis is the best way to prevent disease, as it allows infected people to take preventive steps so that they do not transmit the difference to other people, and diagnosis using artificial intelligence gives an accurate and rapid diagnostic result. Where the analytical method of the data relied on the radial basis network to diagnose the
... Show MoreThis study focuses on how tax administrations in Iraq use Artificial Intelligence (AI) techniques to monitor tax evasion for individuals and companies to achieve Tax Compliance (TC). AI was measured through four dimensions: Advanced Data Analytics Techniques (ADAT), Explainable AI (EAI), Machine learning (ML), and Robotic Process Automation (RPA). At the same time, TC was measured through registration, accounting, and tax payment stages. We relied on the questionnaire form to measure the variables. A sample of employees in the General Tax Authority in Iraq was selected, and a questionnaire was distributed to 132 people. The results indicated that the dimensions of AI affect achieving TC at all stages. This study provides evidence of using A
... Show MoreThe study employs Critical Discourse Analysis (CDA) to analyze how technological discourses are influenced by AI-generate d English texts. The research marries Fairclough’s three-dimensional discourse analysis, Van Dijk’s socio-cognitive approach, and Corpus-Assisted Discourse Studies (CADS) in the use of mixed-methods research, integrating primarily qualitative analysis with quantitative corpus-based data, to perform a thorough analysis of twenty AI-produced English texts. The findings identify the sophisticated linguistic mechanisms through which AI language employs modality, nominalization, passive voice, and interdiscursive blending to normalize and legitimize dominant contemporary ideologies. These mechanisms serve to legitimize te
... Show MoreAlzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of
... Show MoreSeventy five adult virgin female Norway rats (60 experimental and 15 controls) were used toevaluate the effect of seeds of three herbs (Fennel, Cumin and Garden cress) on their mammaryglands. Experimental animals were fed with these herbs (each type of herb seeds was given to twentyexperimental rats) for fourteen days. Rats were sacrificed and mammary gland sections wereobtained, stained then morphometrically assessed. Serum prolactin level was performed too.Results revealed that Garden cress seeds are the strongest lactogenic agent among the three. BothFennel and Cumin seeds were shown to be very weak galactagogues.
Background: Birth weight is a powerful predictor of infant growth and survival. Evidence now shows that children born with low birth weight face an increased risk of chronic diseases and have many health problems including oral health. The aims of this study were to assess the salivary flow rate, viscosity, and salivary cortisol among low birth weight kindergarten children aged 5 years old in Hilla centre, in relation to dental caries and compares them with the normal birth weight children of the same age and gender. Materials and methods: The total sample involved 80 children (40 low birth weights and 40 normal birth weights) aged 5 years old. The diagnosis and recording of severity of dental caries was recorded through the application of
... Show More