The cost‐effective dual functions zeolite‐carbon composite (DFZCC) was prepared using an eco‐friendly substrate prepared from bio‐waste and an organic adhesive at intermediate conditions. The green synthesis method used in this study ensures that chemically harmless compounds are used to obtain a homogeneous distribution of zeolite over porous carbon. The greenly prepared dual‐function composite was extensively characterized using Fourier transform infrared, X‐ray diffraction, thermogravimetric analysis, N2 adsorption/desorption isotherms, field emission scanning electron microscope, dispersive analysis by X‐ray, and point of zero charges. DFZCC had a surface area o
The design of future will still be the most confusing and puzzling issue and misgivings that arouse worry and leading to the spirit of adventures to make progress and arrive at the ways of reviving, creativity and modernism. The idea of prevailing of a certain culture or certain product in design depends on the given and available techniques, due to the fact that the computer and their artistic techniques become very important and vital to reinforce the image in the design. Thus, it is very necessary to link between these techniques and suitable way to reform the mentality by which the design will be reformed, from what has been said, (there has no utilization for the whole modern and available graphic techniques in the design proce
... Show MoreIn this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreIn recent days, the escalating need to seamlessly transfer data traffic without discontinuities across the Internet network has exerted immense pressure on the capacity of these networks. Consequently, this surge in demand has resulted in the disruption of traffic flow continuity. Despite the emergence of intelligent networking technologies such as software-defined networking, network cloudification, and network function virtualization, they still need to improve their performance. Our proposal provides a novel solution to tackle traffic flow continuity by controlling the selected packet header bits (Differentiated Services Code Point (DSCP)) that govern the traffic flow priority. By setting the DSCP bits, we can determine the appropriate p
... Show MoreThe discourse surrounding lingual sovereignty within the African postcolonial context is profoundly intertwined with the fabric of cultural identity and self-determination. Language serves not merely as a conduit for communication but as a repository for a people's collective consciousness, encapsulating their traditions, thoughts, and perspectives. In the realm of postcolonial literature, this dialogue often grapples with the paradox of expressing indigenous narratives through the linguistic tools of former colonizers. Chinua Achebe's seminal work, "Things Fall Apart," exemplifies this conundrum, artfully weaving the orature and culture of Umuofia within the English language. Achebe's choice to write in English—a language imposed upon hi
... Show MoreSpatial and frequency domain techniques have been adopted in this search. mean
value filter, median filter, gaussian filter. And adaptive technique consists of
duplicated two filters (median and gaussian) to enhance the noisy image. Different
block size of the filter as well as the sholding value have been tried to perform the
enhancement process.
In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show More