In recent years, the number of applications utilizing mobile wireless sensor networks (WSNs) has increased, with the intent of localization for the purposes of monitoring and obtaining data from hazardous areas. Location of the event is very critical in WSN, as sensing data is almost meaningless without the location information. In this paper, two Monte Carlo based localization schemes termed MCL and MSL* are studied. MCL obtains its location through anchor nodes whereas MSL* uses both anchor nodes and normal nodes. The use of normal nodes would increase accuracy and reduce dependency on anchor nodes, but increases communication costs. For this reason, we introduce a new approach called low communication cost schemes to reduce communication cost. Unlike MSL* which chooses all normal nodes found in the neighbor, the proposed scheme uses set theory to only select intersected nodes. To evaluate our method, we simulate in our proposed scheme the use of the same MSL* settings and simulators. From the simulation, we find out that our proposed scheme is able to reduce communication cost—the number of messages sent—by a minimum of 0.02 and a maximum of 0.30 with an average of 0.18, for varying node densities from 6 to 20, while nonetheless able to retain similar MSL* accuracy rates.
Recently, there has been a major trend towards environmental issues and concern for the green product because traditional products cause serious environmental impacts such as reduced resources, global warming, energy consumption, emissions and other environmental damage. Under these developments, economic units are looking for cost-effective technologies that reduce the cost of a green product that has four main dimensions: reducing energy, reducing resource consumption, preventing pollution, and using renewable energy while not compromising quality and satisfying customers in order to enhance competitive advantage.
This research will address one of the most important cost-effective green technologies, Gr
... Show MoreFunctionalized-multi wall carbon nanotubes (F-MWCNTs) and functionalized-single wall carbon nanotubes (F-SWCNTs) were well enhanced using CoO Nanoparticles. The sensor device consisted of a film of sensitive material (F-MWCNTs/CoONPs) and (F-SWCNTs/CoO NPs) deposited by drop- casting on an n-type porous silicon substrate. The two sensors perform high sensitivity to NO2 gas at room temperatures. The analysis indicated that the (F-MWCNTs/CoONPs) have a better performance than (F-SWCNTs/CoONPs). The F-SWCNTs/CoONPs gas sensor shows high sensitivity (19.1 %) at RT with response time 17 sec, while F-MWCNTs/CoONPs gas sensor show better sensitivity (39 %) at RT with response time 13 sec. The device shows a very reproducible sensor p
... Show MoreIn this study, tin oxide (SnO2) and mixed with cadmium oxide (CdO) with concentration ratio of (5, 10, 15, 20)% films were deposited by spray pyrolysis technique onto glass substrates at 300ºC temperature. The structure of the SnO2:CdO mixed films have polycrystalline structure with (110) and (101) preferential orientations. Atomic force microscopy (AFM) show the films are displayed granular structure. It was found that the grain size increases with increasing of mixed concentration ratio. The transmittance in visible and NIR region was estimated for SnO2:CdO mixed films. Direct optical band gap was estimated for SnO2 and SnO2 mixed CdO and show a decrease in the energy gap with increasing mixing ratio. From Hall measurement, it was fou
... Show MoreThe development of human resources training programs can assist in agreat deal in creating products of high quality with quantitive advantage for the economicunit;through the sale of products by prices higher of the peer products price in the arket,or decreasing production costs which lead into increusing the unet profits. for these reasons, the human resources have got great importance for their great role in any economy,and they havestarled to consentrate on accounting these resource.From this point of view, this research has handied human resources accounting and their effect on quality costs. In(MID-Refinery Company),quality costs are determined ,then we have larified the reality of training and development in the o
... Show MoreThe development of human resources training programs has an applied and important role in the preparation of human cadresin terms of capacity to absorb technical sciences and skills and scientific and practical practices at faster rates in order to bealighed with continous development. Hence the recognition of the significant role that human resources play in the economy of any country,which has stressed the interest towards the economic unity of the qualified staff that it needsin atimely manner through the ongoing training process in the era of high technology day by day In this regard ,the current research deal with accounting of human resources and its impact on reducing costs in the military establishment and the
... Show MoreIn this paper we describe several different training algorithms for feed forward neural networks(FFNN). In all of these algorithms we use the gradient of the performance function, energy function, to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training. The above algorithms have a variety of different computation and thus different type of form of search direction and storage requirements, however non of the above algorithms has a global properties which suited to all problems.
In the last two decades, networks had been changed according to the rapid changing in its requirements. The current Data Center Networks have large number of hosts (tens or thousands) with special needs of bandwidth as the cloud network and the multimedia content computing is increased. The conventional Data Center Networks (DCNs) are highlighted by the increased number of users and bandwidth requirements which in turn have many implementation limitations. The current networking devices with its control and forwarding planes coupling result in network architectures are not suitable for dynamic computing and storage needs. Software Defined networking (SDN) is introduced to change this notion of traditional networks by decoupling control and
... Show MoreIn this paper, we use concepts and results from percolation theory to investigate and characterize the effects of multi-channels on the connectivity of Dynamic Spectrum Access networks. In particular, we focus on the scenario where the secondary nodes have plenty of vacant channels to choose from-a phenomenon which we define as channel abundance. To cope with the existence of multi-channels, we use two types of rendezvous protocols: naive ones which do not guarantee a common channel and advanced ones which do. We show that, with more channel abundance, even with the use of either type of rendezvous protocol, it becomes difficult for two nodes to agree on a common channel, thereby potentially remaining invisible to each other. We model this
... Show MoreCognitive radio technology is used to improve spectrum efficiency by having the cognitive radios act as secondary users to access primary frequency bands when they are not currently being used. In general conditions, cognitive secondary users are mobile nodes powered by battery and consuming power is one of the most important problem that facing cognitive networks; therefore, the power consumption is considered as a main constraint. In this paper, we study the performance of cognitive radio networks considering the sensing parameters as well as power constraint. The power constraint is integrated into the objective function named power efficiency which is a combination of the main system parameters of the cognitive network. We prove the exi
... Show MoreSurvival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re
... Show More