Production logging is used to diagnose well production problems by evaluating the flow profile, entries of unwanted fluids and downhole flow regimes. Evaluating wells production performance can be easily induce from production logs through interpretation of production log data to provide velocity profile and contribution of each zone on total production. Production logging results supply information for reservoir modeling, provide data to optimize the productivity of existing wells and plan drilling and completion strategies for future wells. Production logging was carried out in a production oil well from Mishrif formation of West Qurna field, with the objective to determine the flow profile and fluid contributions from the perforations after the stimulation job. The measurements were made under shut-in and three choke sizes (60/64”, 46/64” and 32/64”) flowing conditions. Overall, the data quality is acceptable to generate a good analysis. From the flowing surveys, it was observed that just the intervals 2250-2285 m and 2335-2375 m are contributing to the total well production while the well was flowing through the chokes 60/64” and 46/64”. However, most production is coming from the interval 2250-2285 m for each choke. The flow profile changed with the 32/64”, the interval 2250-2285 remained producing but the interval 2335-2375 m started receiving fluid from the upper interval. This cross flow increased after the well was shut in. The temperature log shows a normal behavior while the well is flowing through the 60/64” and 46/64” chokes, but changes as result of the cross flow with the 32/64” choke and with the well shut in. From the capacitance readings and pseudo fluid density (density from differential pressure) only oil is being produced, and there is a static water column at the sump.
In the current study, a direct method was used to create a new series of charge-transfer complexes of chemicals. In a good yield, new charge-transfer complexes were produced when different quinones reacted with acetonitrile as solvent in a 1:1 mole ratio with N-phenyl-3,4-selenadiazo benzophenone imine. By using analysis techniques like UV, IR, and 1H, 13C-NMR, every substance was recognized. The analysis's results matched the chemical structures proposed for the synthesized substances. Functional theory of density (DFT)
has been used to analyze the molecular structure of the produced Charge-Transfer Complexes, and the energy gap, HOMO surfaces, and LUMO surfaces have all been created throughout the geometry optimization process ut
Histone deacetylase inhibitors with zinc binding groups often exhibit drawbacks like non-selectivity or toxic effects. Thus, there are continuous efforts to modify the currently available inhibitors or to discover new derivatives to overcome these problems. One approach is to synthesize new compounds with novel zinc binding groups. The present study describes the utilization of acyl thiourea functionality, known to possess the ability to complex with metals, to be a novel zinc binding group incorporated into the designed histone deacetylase inhibitors. N-adipoyl monoanilide thiourea (4) and N-pimeloyl monoanilide thiourea (5) have been synthesized and characterized successfully. They showed inhibition of growth of human colon adenoc
... Show MoreABSTRACT. A new three metal complexes of La(III), Ce(IV) and UO2(II) ions have been synthesized based on a Schiff base derived from the condensation of L-histidine and anisaldehyde. All prepared compounds were characterized by different spectroscopic techniques and Density-functional theory (DFT) calculations. The complexes were proposed to have an octahedral structure based on the investigated results. The optimized shape, numbering system, and dipole moment vector of Ligand and La, Ce, and UO2 (1:1) chelates were investigated. The Schiff base ligand and complexes exhibit moderate action against all of the bacteria tested, with P. aeruginosa, Klebsiella sp., and E. faecalis respectively being the order of inhibition.
... Show MoreIn this research, titanium dioxide nanoparticles (TiO2 NPs) were prepared through the sol-gel process at an acidic medium (pH3).TiO2 nanoparticles were prepared from titanium trichloride (TiCl3) as a precursor with Ammonium hydroxide (NH4OH) with 1:3 ratio at 50 °C. The resulting gel was dried at 70 °C to obtain the Nanocrystalline powder. The powder from the drying process was treated thermally at temperatures 500 °C and 700 °C. The crystalline structure, surface morphology, and particle size were studied by using X-ray diffraction (XRD), Atomic Force Microscopy (AFM), and Scanning Electron Microscope (SEM). The results showed (anatase) phase of titanium dioxide with the average grain size
... Show MoreIn the current endeavor, a new Schiff base of 14,15,34,35-tetrahydro-11H,31H-4,8-diaza-1,3(3,4)-ditriazola-2,6(1,4)-dibenzenacyclooctaphane-4,7-dien-15,35-dithione was synthesized. The new symmetrical Schiff base (Q) was employed as a ligand to produce new complexes comprising Co(II), Ni(II), Cu(II), Pd(II), and Pt(II) metal-ions at a ratio of 2:1 (Metal:ligand). There have been new ligands and their complexes validated by (FTIR), (UV-visible), 1H-NMR, 13C-NMR, CHNS, and FAA spectroscopy, Thermogravimetric analysis (TG), Molar conductivity, and Magnetic susceptibility. The photostabilization technique to enhance the polymer was also used. The ligand Q and its complexes were mixed in 0.5% w/w of polyvinyl chloride in tetrahydrofuran
... Show MoreIn this manuscript, the effect of substituting strontium with barium on the structural properties of Tl0.8Ni0.2Sr2-xBrxCa2Cu3O9-δcompound with x= 0, 0.2, 0.4, have been studied. Samples were prepared using solid state reaction technique, suitable oxides alternatives of Pb2O3, CaO, BaO and CuO with 99.99% purity as raw materials and then mixed. They were prepared in the form of discs with a diameter of 1.5 cm and a thickness of (0.2-0.3) cm under pressures 7 tons / cm2, and the samples were sintered at a constant temperature o
... Show More