The present work aimed to make a comparative investigation between three different ionospheric models: IRI-2020, ASAPS and VOACAP. The purpose of the comparative study is to investigate the compatibility of predicting the Maximum Usable Frequency parameter (MUF) over mid-latitude region during the severe geomagnetic storm on 17 March 2015. Three stations distributed in the mid-latitudes were selected for study; these are (Athens (23.50o E, 38.00o N), Jeju (124.53o E, 33.6o N) and Pt. Arguello (239.50o W, 34.80o N). The daily MUF outcomes were calculated using the tested models for the three adopted sites, for a span of five-day (the day of the event and two days preceding and following the event day). The calculated datasets were compared for each location with the observed daily MUF values. In general, the findings show that the three investigated models gave good outcomes compared to the observed values for all selected stations. The comparative investigation results of the three tested models corresponding to the observed MUF values during the storm event revealed that the IRI -2020 Model indicate a clear impact of the geomagnetic storm on the predicted MUF values during the day of event. Similarly, for ASAPS Model, the storm's impact is clear on both the day of the event and the subsequent day, in contrast, the VOACAP model showed almost no impact of the geomagnetic storm on the observed MUF values throughout the entire study period for event 17 March 2015.
Background: Color stability of glass ionomers (GIs) could be affected by many factors such as pH and consumption of liquid medications like antibiotics. Most common antibiotics used during childhood are amoxicillin suspension (AM.S) and azithromycin suspension (AZ.S) which have acidic and basic pH respectively. Aim: to evaluate and compare the effect of AM.S and AZ.S on color stability of nano resin-modified GI. Methods: Thirty disc of nano resin-modified glass ionomer (2mm height x 4mm diameter) were divided into three groups (n=10 for each) and independently exposed to AM.S, AZ.S, and artificial saliva (A.S.). Color stability was evaluated in triplicate by VITA Easyshade® before and after three immersion protocols, repeated over a thr
... Show MoreThe Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method extracted alkaloid compounds from the plant Catharanthus roseus and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles using Sodium TriPolyPhosphate (STPP). The extracted alkaloids were linked with Chitosan nanoparticles CSNPs by maleic anhydride to get the final product (CSNPs- Linker- alkaloids). The synthesized (CSNPs- Linker- alkaloids) was characterized using SEM spectroscopy UV–Vis., Zeta Potential, and HPLC High-Performance Liquid Chromatography. Scanning electron microscope (SEM) analysis shows that the Chitosan nanoparticles (CSNPs) have small dim
... Show MoreThe goal of the extant revision was to explore the influence of caffeic acid (CA) extracted from Arctium lappa L. on lipid profile and histology of aorta in rats . Analytical study demonstrated a high percentage of both chlorogenic and caffeic acid in the 80 % methanol extract of the aerial parts (leaves and stems) of Arctium lappa L. from the family Asteraceace. Hypolipidemic activity of caffeic acid was studied against cholesterol induced hypercholesterolemia in Wistar albino rats for thirty days. Rats were separated into normal group (A), hypercholesterolemic positive controller group (B). While, the rest three groups (C, D and E) attended as hypercholesterol
... Show MoreJournal of Theoretical and Applied Information Technology is a peer-reviewed electronic research papers & review papers journal with aim of promoting and publishing original high quality research dealing with theoretical and scientific aspects in all disciplines of IT (Informaiton Technology
Some azo compounds were prepared by coupling the diazonium salts of amines with 2,4-dimethylphenol The structure of azo compounds were determined on the basis of elemental analyses, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Complexes of nickel(II) and copper(II) have been synthesized and characterized. The composition of complexes has been established by using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as conductivity magnetic susceptibility measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1×10-4 - 3×10-4 M). High molar absorbtivity of the complex solutions were observ
... Show MoreToxoplasma gondii has a worldwide distribution and it is one of the most prevalent infectious agents in Iraq. The study was conducted on 200 serum samples of unmarried female university of students age ranged between 18 to 26 years to detect Toxoplasma gondii antibodies. The aim of this study was to detect T. gondii antibodies among unmarried female students in Iraqi universities using different serological tests. Seventy six (38%) serum samples out of 200 subjects were positive for toxoplasma antibodies by Latex agglutination test (LAT). Among 76 LAT sera positive ,only 58 (29%) serum samples were positive with toxoplasma IgG ELISA test , however , the results of IgM ELISA assay were positive only for 3 (1.5%) unmarried
... Show MoreThe paper discusses the structural and optical properties of In 2 O 3 and In 2 O 3-SnO 2 gas sensor thin films were deposited on glass and silicon substrates and grown by irradiation of assistant microwave on seeded layer nucleated using spin coating technique. The X-ray diffraction revealed a polycrystalline nature of the cubic structure. Atomic Force Microscopy (AFM) used for morphology analysis that shown the grain size of the prepared thin film is less than 100 nm, surface roughness and root mean square for In 2 O 3 where increased after loading SnO 2 , this addition is a challenge in gas sensing application. Sensitivity of In 2 O 3 thin film against NO 2 toxic gas is 35% at 300 o C. Sensing properties were improved after adding Tin Oxi
... Show More