Reservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is used to train the model, where the model prediction result is validated with core permeability. Seven oil well logs were used as input parameters, and the model was constructed with Techlog software. The predicted permeability with the model compared with Schlumberger-Doll-Research permeability as a cross plot, which results in the correlation coefficient of 94%, while the predicted permeability validated with the core permeability of the well, which obtains good agreement where R2 equals 80%. The model was utilized to forecast permeability in a well that did not have a nuclear magnetic resonance log, and the predicted permeability was cross-plotted against core permeability as a validation step, with a correlation coefficient of 77%. As a result, the low percentage of matching was due to data limitations, which demonstrated that as the amount of data used to train the model increased, so did the precision.
In this study, the sonochemical degradation of phenol in water was investigated using two types of ultrasonic wave generators; 20 kHz ultrasonic processor and 40 kHz ultrasonic cleaner bath. Mineralization rates were determined as a function of phenol concentration, contact time, pH, power density, and type of ultrasonic generator. Results revealed that sonochemical degradation of the phenol conversion was enhanced at increased applied power densities and acidic conditions. At 10 mg/L initial concentration of phenol, pH 7, and applied power density of 3000 W/L, the maximum removal efficiency of phenol was 93% using ultrasonic processor at 2h contact time. Whereby, it was 87% using and ultrasonic cleaner bath at 16h contact time and 150 W
... Show MoreThis work is devoted to define new generalized gamma and beta functions involving the recently suggested seven-parameter Mittag-Leffler function, followed by a review of all related special cases. In addition, necessary investigations are affirmed for the new generalized beta function, including, Mellin transform, differential formulas, integral representations, and essential summation relations. Furthermore, crucial statistical application has been realized for the new generalized beta function.
Density functional theory (DFT) calculations were used to evaluate the capability of Glutamine (Gln) and its derivative chemicals as inhibitors for the anti-corrosive behavior of iron. The current work is devoted to scrutinizing reactivity descriptors (both local and global) of Gln, two states of neutral and protonated. Also, the change of Gln upon the incorporation into dipeptides was investigated. Since the number of reaction centers has increased, an enhancement in dipeptides’ inhibitory effect was observed. Thus, the adsorption of small-scale peptides and glutamine amino acids on Fe surfaces (1 1 1) was performed, and characteristics such as adsorption energies and the configuration with the highest stability and lowest energy were ca
... Show MoreIn the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and
... Show MoreIn the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and
... Show MoreIn the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and
... Show MoreAs tight gas reservoirs (TGRs) become more significant to the future of the gas industry, investigation into the best methods for the evaluation of field performance is critical. While hydraulic fractured well in TRGs are proven to be most viable options for economic recovery of gas, the interpretation of pressure transient or well test data from hydraulic fractured well in TGRs for the accurate estimation of important reservoirs and fracture properties (e.g. fracture length, fracture conductivity, skin and reservoir permeability) is rather very complex and difficult because of the existence of multiple flow profiles/regimes. The flow regimes are complex in TGRs due to the large hydraulic fractures n
The possibility of predicting the mass transfer controlled CaCO3 scale removal rate has been investigated.
Experiments were carried out using chelating agents as a cleaning solution at different time and Reynolds’s number. The results of CaCO3 scale removal or (mass transfer rate) (as it is the controlling process) are compared with proposed model of prandtl’s and Taylor particularly based on the concept of analogy among momentum and mass transfer.
Correlation for the variation of Sherwood number ( or mass transfer rate ) with Reynolds’s number have been obtained .
An experimental and theoretical works were carried out to model the wire condenser in the domestic refrigerator by calculating the heat transfer coefficient and pressure drop and finding the optimum performance. The two methods were used for calculation, zone method, and an integral method. The work was conducted by using two wire condensers with equal length but different in tube diameters, two refrigerants, R-134a and R-600a, and two different compressors matching the refrigerant type. In the experimental work, the optimum charge was found for the refrigerator according to ASHRAE recommendation. Then, the tests were done at 32˚C ambient temperature in a closed room with dimension (2m*2m*3m). The results showed that th
... Show More