Reservoir permeability plays a crucial role in characterizing reservoirs and predicting the present and future production of hydrocarbon reservoirs. Data logging is a good tool for assessing the entire oil well section's continuous permeability curve. Nuclear magnetic resonance logging measurements are minimally influenced by lithology and offer significant benefits in interpreting permeability. The Schlumberger-Doll-Research model utilizes nuclear magnetic resonance logging, which accurately estimates permeability values. The approach of this investigation is to apply artificial neural networks and core data to predict permeability in wells without a nuclear magnetic resonance log. The Schlumberger-Doll-Research permeability is used to train the model, where the model prediction result is validated with core permeability. Seven oil well logs were used as input parameters, and the model was constructed with Techlog software. The predicted permeability with the model compared with Schlumberger-Doll-Research permeability as a cross plot, which results in the correlation coefficient of 94%, while the predicted permeability validated with the core permeability of the well, which obtains good agreement where R2 equals 80%. The model was utilized to forecast permeability in a well that did not have a nuclear magnetic resonance log, and the predicted permeability was cross-plotted against core permeability as a validation step, with a correlation coefficient of 77%. As a result, the low percentage of matching was due to data limitations, which demonstrated that as the amount of data used to train the model increased, so did the precision.
Any software application can be divided into four distinct interconnected domains namely, problem domain, usage domain, development domain and system domain. A methodology for assistive technology software development is presented here that seeks to provide a framework for requirements elicitation studies together with their subsequent mapping implementing use-case driven object-oriented analysis for component based software architectures. Early feedback on user interface components effectiveness is adopted through process usability evaluation. A model is suggested that consists of the three environments; problem, conceptual, and representational environments or worlds. This model aims to emphasize on the relationship between the objects
... Show MoreIn the present work studies were carried out to extract a cationic dye (Methylene Blue MB) from an aqueous solution using emulsion liquid membrane process (ELM). The organic phase (membrane phase) consists of Span 80 as emulsifier, sulfuric acid solution as stripping agent and hexane as diluent.
In this study, important factors influencing the extraction of methylene blue dye were studied. These factors include H2SO4 concentration in the stripping phase, agitation speed in the dye permeation stage, Initial dye concentration and diluent type.
More than (98%) of Methylene blue dye was extracted at the following conditions: H2SO4 concentration (1.25) M, agitation
... Show MoreTourism plays an important role in Malaysia’s economic development as it can boost business opportunity in its surrounding economic. By apply data mining on tourism data for predicting the area of business opportunity is a good choice. Data mining is the process that takes data as input and produces outputs knowledge. Due to the population of travelling in Asia country has increased in these few years. Many entrepreneurs start their owns business but there are some problems such as wrongly invest in the business fields and bad services quality which affected their business income. The objective of this paper is to use data mining technology to meet the business needs and customer needs of tourism enterprises and find the most effective
... Show MorePPSU hollow fiber nanofiltration membranes are prepared by applying two concentrations and various extrusion pressures according to the phase inversion method. Cross-sectional area and outer structures were characterized by using scanning electron microscope (SEM) and atomic force microscopy (AFM). In additional to the pore size distribution, either the mean roughness or the mean pore size of the PPSU hollow fiber surfaces was evaluated by AFM. It was found that the morphology of the PPSU fibers had both sponge-like and finger-like structures through different extrusion pressures and PPSU concentrations. The mean pore size and mean roughness for inner and outer surfaces were seen to be decreased with the increase of extrusion pressure at
... Show MorePolycaprolactone polymer is widely used in medical applications due to its biocompatibility. Electro spinning was used to create poly (ε- caprolactone) (PCL) nanocomposite fiber mats containing hydroxyapatite (HA) at concentrations ranging from 0.05 to 0.4% wt. The chemical properties of the fabricated bio composite fibers were evaluated using FTIR and morphologically using field-emission scanning-electron microscopy (FESEM), Porosity, contact angle, as well as mechanical testing(Young Modulus and Tensile strength) of the nanofibers were also studied. The FTIR results showed that all the bonds appeared for the pure PCL fiber and the PCL/HA nano fibers. The FESEM nano fiber showed that the fiber diameter increased from 54.13 to 155.79 (n
... Show MoreLinear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.
In this paper we have been focus for the comparison between three forms for classification data belongs
... Show MoreIn this research we assumed that the number of emissions by time (𝑡) of radiation particles is distributed poisson distribution with parameter (𝑡), where < 0 is the intensity of radiation. We conclude that the time of the first emission is distributed exponentially with parameter 𝜃, while the time of the k-th emission (𝑘 = 2,3,4, … . . ) is gamma distributed with parameters (𝑘, 𝜃), we used a real data to show that the Bayes estimator 𝜃 ∗ for 𝜃 is more efficient than 𝜃̂, the maximum likelihood estimator for 𝜃 by using the derived variances of both estimators as a statistical indicator for efficiency
Porous Silicon (PS) layer has been prepared from p-type silicon by electrochemical etching method. The morphology properties of PS samples that prepared with different current density has been study using atom force measurement (AFM) and it show that the Layer of pore has sponge like stricture and the average pore diameter of PS layer increase with etching current density increase .The x-ray diffraction (XRD) pattern indicated the nanocrystaline of the sample. Reflectivity of the sample surface is decrease when etching current density increases because of porosity increase on surface of sample. The photolumenses (PL) intensity increase with increase etching current density. The PL is affected by relative humidity (RH) level so we can use
... Show More