According to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through the conveyor belt motion. An optimal speed controlling mechanism of the conveyor belt is presented by detecting smartly the parts' number and weights using the vision sensor, where the latter will give sufficient visualization about the system. Then image processing will deliver the important data to ANN, which will optimally decide the best conveyor belt speed. This decided speed will achieve the aim of power saving in belt motion. The proposed controlling system will optimally switch the speed of the conveyor belt system to ON, OFF and idle status in order to minimize the consumption of energy in the conveyor belt. As the conveyor belt is fully loaded it moves at its maximum speed. But if the conveyor is partially loaded, the speed will be adjusted accordingly by the ANN. If no loading existed, the conveyor will be stopped. By this way, a very significant energy amount in addition to cost will be saved. The developed conveyor belt system will modernize industrial manufacturing lines, besides reducing energy consumption and cost and increasing the conveyor belts lifetime
Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN
... Show MoreThis paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreThe paper presents the design of a system consisting of a solar panel with Single Input/Multiple Outputs (DC-DC) Buck Converter by using Simulink dialogue box tools in MATLAB software package for simulation the system. Maximum Power Point Tracking (MPPT) technique depending on Perturb and Observe (P&O) algorithm is used to control the output power of the converter and increase the efficiency of the system. The characteristics of the MSX-60 PV module is chosen in design of the system, whereas the electrical characteristics (P-V, I-V and P-I curves) for the module are achieved, that is affected by the solar radiation and temperature variations. The proposed design module has been found to be stable for any change in atmospheric tempera
... Show MoreIn this work, oral lesions belong to 17 patients, 7 males and 10 females. Their ages range between 15 and 45 years. Follow up was conducted after one day, 7 days, 14 days, one month, and finally 3 months postoperatively. The study lasted for 1.5 year. Surgical diode laser with wavelength of 810 ± 20 nm, with two power levels of 10 and 15 W were used in contact and in non-contact mode via optical fiber. The postoperative outcome revealed; greater haemostatic capability, dry, sealed wound and noticeable lack in pain sensation
The research amid to find out the extent of Iraqi oil companies commitment to implement internal control procedures in accordance with the updated COSO framework. As the research problem was represented in the fact that many of the internal control procedures applied in the Iraqi oil companies are incompatible with most modern international frameworks for internal control, including the integrated COSO framework, issued by the Committee of Sponsoring Organizations of the Tradeway Committee. The research followed the quantitative approach to handling and analysing data by designing a checklist to represent the research tool for collecting data. The study population was represented in the Iraqi oil companies, while the study sample
... Show MoreThis work presents the use of laser diode in the fiber distributed data interface FDDI networks. FDDI uses optical fiber as a transmission media. This solves the problems resulted from the EMI, and noise. In addition it increases the security of transmission. A network with a ring topology consists of three computers was designed and implemented. The timed token protocol was used to achieve and control the process of communication over the ring. Nonreturn to zero inversion (NRZI) modulation was carried out as a part of the physical (PHY) sublayer. The optical system consists of a laser diode with wavelength of 820 nm and 2.5 mW maximum output power as a source, optical fiber as a channel, and positive intrinsic negative (PIN) photodiode
... Show MoreIn this research, the one of the most important model and widely used in many and applications is linear mixed model, which widely used to analysis the longitudinal data that characterized by the repeated measures form .where estimating linear mixed model by using two methods (parametric and nonparametric) and used to estimate the conditional mean and marginal mean in linear mixed model ,A comparison between number of models is made to get the best model that will represent the mean wind speed in Iraq.The application is concerned with 8 meteorological stations in Iraq that we selected randomly and then we take a monthly data about wind speed over ten years Then average it over each month in corresponding year, so we g
... Show MoreThis study examines traveling wave solutions of the SIS epidemic model with nonlocal dispersion and delay. The research shows that a key factor in determining whether traveling waves exist is the basic reproduction number R0. In particular, the system permits nontrivial traveling wave solutions for σ≥σ∗ for R0>1, whereas there are no such solutions for σ<σ∗. This is because there is a minimal wave speed σ∗>0. On the other hand, there are no traveling wave solutions when R0≤1. In conclusion, we provide several numerical simulations that illustrate the existence of TWS.
Abstract
The current research aims to examine the effectiveness of a training program for children with autism and their mothers based on the Picture Exchange Communication System to confront some basic disorders in a sample of children with autism. The study sample was (16) children with autism and their mothers in the different centers in Taif city and Tabuk city. The researcher used the quasi-experimental approach, in which two groups were employed: an experimental group and a control group. Children aged ranged from (6-9) years old. In addition, it was used the following tools: a list of estimation of basic disorders for a child with autism between (6-9) years, and a training program for children with autism
... Show MoreIn every country in the world, there are a number of amputees who have been exposed to some accidents that led to the loss of their upper limbs. The aim of this study is to suggest a system for real-time classification of five classes of shoulder girdle motions for high-level upper limb amputees using a pattern recognition system. In the suggested system, the wavelet transform was utilized for feature extraction, and the extreme learning machine was used as a classifier. The system was tested on four intact-limbed subjects and one amputee, with eight channels involving five electromyography channels and three-axis accelerometer sensor. The study shows that the suggested pattern recognition system has the ability to classify the sho
... Show More