According to the importance of the conveyor systems in various industrial and service lines, it is very desirable to make these systems as efficient as possible in their work. In this paper, the speed of a conveyor belt (which is in our study a part of an integrated training robotic system) is controlled using one of the artificial intelligence methods, which is the Artificial Neural Network (ANN). A visions sensor will be responsible for gathering information about the status of the conveyor belt and parts over it, where, according to this information, an intelligent decision about the belt speed will be taken by the ANN controller. ANN will control the alteration in speed in a way that gives the optimized energy efficiency through the conveyor belt motion. An optimal speed controlling mechanism of the conveyor belt is presented by detecting smartly the parts' number and weights using the vision sensor, where the latter will give sufficient visualization about the system. Then image processing will deliver the important data to ANN, which will optimally decide the best conveyor belt speed. This decided speed will achieve the aim of power saving in belt motion. The proposed controlling system will optimally switch the speed of the conveyor belt system to ON, OFF and idle status in order to minimize the consumption of energy in the conveyor belt. As the conveyor belt is fully loaded it moves at its maximum speed. But if the conveyor is partially loaded, the speed will be adjusted accordingly by the ANN. If no loading existed, the conveyor will be stopped. By this way, a very significant energy amount in addition to cost will be saved. The developed conveyor belt system will modernize industrial manufacturing lines, besides reducing energy consumption and cost and increasing the conveyor belts lifetime
Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreBackground:Periodontal diseases are infectious diseases in which periodontalpathogens trigger chronic inflammatory and immune responses. Interleukine-6 is a multifunctional cytokine playing a central role in inflammation and tissue injury.The aim of the study IS to determine the level of Interleukin-6(IL-6) in saliva of patients with chronic periodontitis compared to healthy subjects. Materials and Methods:The total subjects of the present study is 60, divided into 3 groups; 20 patients with chronic periodontitis with pocket depth(PD ≥4 mm)(group I), 20 patients with pocket depth(PD <4 mm) with clinical attachment loss (group II), and 20 healthy controls with pocket probing depth (PPD ≤ 3 mm) without clinical attachment loss (g
... Show MoreMagneto-rheological (MR) Valve is one of the devices generally used to control the speed of Hydraulic actuator using MR fluid. The performance of valve depends on the magnetic circuit design. Present study deals with a new design of MR valve. The finite element analysis is carried out on this valve to optimize its design. The design of the magnetic circuit is accomplished by magnetic finite element software such as Finite Element Method Magnetic (FEMM). The Model dimensions of MR valve, material properties and the circuit properties of valve coil are taken into account. The results of analysis are presented in terms of magnetic strength and magnetic flux density. The valve can be operated with variable flow rate by varying the current. It i
... Show MoreIn this paper we describe several different training algorithms for feed forward neural networks(FFNN). In all of these algorithms we use the gradient of the performance function, energy function, to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training. The above algorithms have a variety of different computation and thus different type of form of search direction and storage requirements, however non of the above algorithms has a global properties which suited to all problems.
Oxazepine [1] is non – nomologous seven –member ring that contain two netroatoms (oxygen and nitrogen ). Meanwhile diazepine [2] contains to nitrogen atoms in seven – member ring.
Diazepam (valium) [3] is used to relive anxiety tension associated with anxiety disorder and muscle spasms (1, 2, 3
... Show MoreThis study was carried out at the Dept. Hortic. and Land.Gard., Coll. Agric. Eng.Sci., University of Baghdad during fall season of 2019-2020, in order to evaluate the effect of nutrient solution type under hydroponic system (NFT) on growth, yield and quality of broccoli Brassica oleracea var.italica. Two experiments were carried out which were the standard solution experiment (Cooper) and the alternative solution experiment (ABEER) prepared from fertilizers. Results revealed that the type of solution used in the hydroponics system had non significant effect on the leaves content of N,K, Mg, Fe, Cu, B, Chlorophyll, leaves number, root length, weight of the main heads, number of side heads were not significantly affected. 13nt, refl
... Show More