The purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to minimize the total costs, Where the approved model was able to minimize the total costs by 25%. A future study investigating optimization heuristic with stochastics demand would be very interesting.
The purpose of this study is to investigate learners' listening comprehension problems with Englishlectures. The study was guided by research question (What are the listening comprehension problems learners have with lectures in English).Furthermore; the main significant goal were declared through conducting this study, as well as providing some procedures of distribution the questionnaire of the study.Moreover, it presents several definitions of listening. This study definitely depends on questionnaire instrument to gathering the required data. The participants of the study were 30 learners completed their secondary school and joined at the college. Based on the findings among the five factors (text, speaker, task, environment, and list
... Show MoreThe load shedding scheme has been extensively implemented as a fast solution for unbalance conditions. Therefore, it's crucial to investigate supply-demand balancing in order to protect the network from collapsing and to sustain stability as possible, however its implementation is mostly undesirable. One of the solutions to minimize the amount of load shedding is the integration renewable energy resources, such as wind power, in the electric power generation could contribute significantly to minimizing power cuts as it is ability to positively improving the stability of the electric grid. In this paper propose a method for shedding the load base on the priority demands with incorporating the wind po
... Show MoreMaximizing the net present value (NPV) of oil field development is heavily dependent on optimizing well placement. The traditional approach entails the use of expert intuition to design well configurations and locations, followed by economic analysis and reservoir simulation to determine the most effective plan. However, this approach often proves inadequate due to the complexity and nonlinearity of reservoirs. In recent years, computational techniques have been developed to optimize well placement by defining decision variables (such as well coordinates), objective functions (such as NPV or cumulative oil production), and constraints. This paper presents a study on the use of genetic algorithms for well placement optimization, a ty
... Show MoreThe purpose of this paper is applying the robustness in Linear programming(LP) to get rid of uncertainty problem in constraint parameters, and find the robust optimal solution, to maximize the profits of the general productive company of vegetable oils for the year 2019, through the modify on a mathematical model of linear programming when some parameters of the model have uncertain values, and being processed it using robust counterpart of linear programming to get robust results from the random changes that happen in uncertain values of the problem, assuming these values belong to the uncertainty set and selecting the values that cause the worst results and to depend buil
... Show MoreObjective: Assessment the psychological problems in patients with colorectal cancer, and to find out the
relationship between socio-demographic characteristics such as (age, sex, marital status, educational level,
and occupation) and psychological problems for those patients.
Methodology: A descriptive design is employed through the present study from 1
st July 2011 to 25
th December
2011 in order to study the quality of life in colorectal cancer patients with psychological problems.
A purposive (non probability) sample is selected for the study which includes (60) patients diagnosed with
colorectal cancer were treated in Mosul Oncology and Nuclear Medicine hospital or the patients who visited
the outpatient cl
Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreThe Ant System Algorithm (ASA) is a member of the ant colony algorithms family in swarm intelligence methods (part of the Artificial Intelligence field), which is based on the behavior of ants seeking a path and a source of food in their colonies. The aim of This algorithm is to search for an optimal solution for Combinational Optimization Problems (COP) for which is extremely difficult to find solution using the classical methods like linear and non-linear programming methods.
The Ant System Algorithm was used in the management of water resources field in Iraq, specifically for Haditha dam which is one of the most important dams in Iraq. The target is to find out an efficient management system for
... Show MoreAbstract
For sparse system identification,recent suggested algorithms are
-norm Least Mean Square (
-LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named
-ZA-LMS,