Surface Plasmon Resonance (SPR)-based plastic optical fiber sensor for estimating the concentration and refractive index of sugar in human blood serum. The sensor is fabricated by a small part (10mm) of optical fiber in the middle is embedded in a resin block and then the polishing process is done, after that it is deposited with about (40nm) thickness of gold metal. The blood serum is placed on gold coated core of an Optical grade plastic optical fiber of 980 µm core diameter.
Background: Oral carcinogenesis is a molecular and histological multistage process featuring genetic and phenotypic markers for each stage, which involves enhanced function of several oncogenes and/or the deactivation of tumor suppressor genes, resulting in the loss of cell cycle checkpoints. The progression towards malignancy includes sequential histopathological alterations ranging from hyperplasia through dysplasia to carcinoma in situ and invasive carcinoma. The p16 gene produces p16 protein, which in turn inhibits phosphorylation of retinoblastoma, p16 play a significant role in early carcinogenesis. Human papillomavirus is a well established heterogeneous virus and plays an important role in oral cancers. The aims of the study were to
... Show MoreBackground: Fiber-optic endoscopy is an important
investigation of the large intestine, whether or not the
radiologist (barium enema) has discovered a lesion in
the bowel. Colonoscopy affords a unique opportunity
to direct visualization of entire colonic mucosa. At
the same time, the physician can obtain biopsy specimens, remove polyps, and decompress volvuli.
Most experienced endoscopists and well prepared
patients can reach the cecum in over 90% of patients.
If colonoscopy is properly performed, it has a low
risk of complications, such as perforation and bleeding.
Methods: A total of 70 consecutive patients admitted
to Endoscopy department at Al-Kindy Teaching hospital from September- 2008 to July-2009.
This study measured and analyzed job satisfaction among faculty members at the university of Irbid College in relation to gender social status, years of experience, academic rank , qualification, the population consisted of 110 full-time Jordanian factually members. A total of 72. (61%) factually, members participated in this study. The research instrument which was developed by the researcher consisted of tow parts: personal information and the job Satisfaction Questionnaire Frequencies, percentages, means and one-way analyses of variance were employed to analyze the data. The level of significance was set at 0.05. A Secheffe method of multiple comparisons was used for follow-up investigation.
... Show MoreBackground: Fiber-optic endoscopy is an important
investigation of the large intestine, whether or not the
radiologist (barium enema) has discovered a lesion in
the bowel. Colonoscopy affords a unique opportunity
to direct visualization of entire colonic mucosa. At
the same time, the physician can obtain biopsy specimens, remove polyps, and decompress volvuli.
Most experienced endoscopists and well prepared
patients can reach the cecum in over 90% of patients.
If colonoscopy is properly performed, it has a low
risk of complications, such as perforation and bleeding.
Methods: A total of 70 consecutive patients admitted
to Endoscopy department at Al-Kindy Teaching hospital from September- 2008 to July-2009.
In this paper,we focus on the investigated and studied of transition rate in metal/organic semiconductor interface due to quantum postulate and continuum transition theory. A theoretical model has been used to estimate the transition rate cross the interface through estimation many parameters such that ;transition energy ,driving electronic energy U(eV) ,Potential barrier ,electronic coupling ,semiconductor volume ,density ,metal work function ,electronic affinity and temperature T. The transition energy is critical facter of charge transfer through the interfaces of metal organic films device and itscontrol of charge injection and transport cross interface. However,the potential at interfa
... Show More
