This investigation integrates experimental and numerical approaches to study a novel solar air heater aimed at achieving an efficient design for a solar collector suitable for drying applications under the meteorological conditions of Iraq. The importance of this investigation stems from the lack of optimal exploitation of solar energy reaching the solar collector, primarily attributable to elevated thermal losses despite numerous designs employed in such solar systems. Consequently, enhancing the thermal performance of solar collectors, particularly those employed in crop drying applications, stands as a crucial focal point for researchers within this domain. Two identical double-pass solar air heaters were designed and constructed for this research. Two types of copper foam sheets with different pore densities, specifically 10 PPI and 40 PPI, were used as absorber plates. The novel solar air heater was compared with a conventional solar air heater equipped with a flat absorber plate based on thermal performance. The effects of the mass flow rate, the air gap of the solar collector, and solar irradiation were examined on various parameters, including the outlet air temperature, solar collector efficiency, and pressure drop across the solar collectors. The results demonstrated that the double-pass solar air heater equipped with a 10 PPI porous absorber plate exhibited superior thermal performance compared to both the double-pass solar air heater with a 40 PPI absorber plate and the conventional absorber plates. Consequently, it can be considered suitable for drying applications. Furthermore, a comparison of the experimental findings with the results obtained from previous studies showed a good agreement.
A solar updraft tower power plant (solar tower) is a solar thermal power plant that utilizes a combination of solar
air collector and central updraft tube to generate an induced convective flow which drives pressure staged turbines to generate electricity.
This paper presents practical results of a prototype of a solar chimney with thermal mass, where the glass surface is replaced by transparence plastic cover. The study focused on chimney's basements kind effect on collected air temperatures. Three basements were used: concrete, black concrete and black pebbles basements. The study was conducted in Baghdad from August to November 2009.
The results show that the best chimney efficiency attaine
... Show MoreThis paper demonstrates an experimental and numerical study aimed at comparing the influence of openings of different configurations on the flexural behavior of reinforced concrete gable roof beams. The experimental program consisted of testing six simply supported gable beams subjected to mid-point concentrated load. The variable which has been investigated in this work was opening's configuration (quadrilateral or circular) with the same upper and lower chords depth. The results indicate improvement in the beams’ flexural behavior when circular openings were used compared with that of quadrilateral openings, represented by an increase in ultimate load capacity and a decrease in deflection at the service limit. Also, there was an
... Show MorePartial shading is one of the problems that affects the power production and the efficiency of photovoltaic module. A series of experimental work have been done of partial shading of monocrystalline PV module; 50W, Isc: 3.1A, Voc: 22V with 36 cells in series is achieved. Non-linear power output responses of the module are observed by applying various cases of partial shading (vertical and horizontal shading of solar cells in the module). Shading a single cell (corner cell) has the greatest impact on output energy. Horizontal shading or vertical shading reduced the power from 41W to 18W at constant solar radiation 1000W/m2 and steady state condition. Vertical blocking a column
... Show MoreThis research presents a numerical study to simulate the heat transfer by forced convection as a result of fluid flow inside channel’s with one-sided semicircular sections and fully filled with porous media. The study assumes that the fluid were Laminar , Steady , Incompressible and inlet Temperature was less than Isotherm temperature of a Semicircular sections .Finite difference techniques were used to present the governing equations (Momentum, Energy and Continuity). Elliptical Grid is Generated using Poisson’s equations . The Algebraic equations were solved numerically by using (LSOR (.This research studied the effect of changing the channel shapes on fluid flow and heat transfer in two cases ,the first: cha
... Show MoreThe structure, optical, and electrical properties of SnSe and its application as photovoltaic device has been reported widely. The reasons for interest in SnSe due to the magnificent optoelectronic properties with other encouraging properties. The most applications that in this area are PV devices and batteries. In this study tin selenide structure, optical properties and surface morphology were investigated and studies. Thin-film of SnSe were deposit on p-Si substrates to establish a junction as solar cells. Different annealing temperatures (as prepared, 125,200, 275) °C effects on SnSe thin films were investigated. The structure properties of SnSe was studied through X-ray diffraction, and the results appears the increasing of the peaks
... Show MoreThe present work includes design, construction and operates of a prototype solar absorption refrigeration system, using methanol as a refrigerant to avoid any refrigerant that cause global warming and greenhouse effect. Flat plate collector was used because it’s easy, ninexpensive and efficient. Many test runs (more than 50) were carried out on the system from May to October, 2013; the main results were taken between the period of July 15, 2013 to August 15, 2013 to find the maximum C.O.P, cooling, temperature and pressure of the system. The system demonstrates a maximum generator temperature of 93.5 oC, on July 18, 2013 at 2:30 pm, and the average mean generator temperature Tgavr was 74.7 °C, for this period. The maximum pressure Pg
... Show MoreInvestigating the thermal and electrical gains and efficiencies influence the designed photovoltaic thermal hybrid collector (PVT) under different weather conditions. The designed system was manufactured by attaching a fabricated cooling system made of serpentine tubes to a single PV panel and connecting it to an automatic controlling system for measuring, monitoring, and simultaneously collecting the required data. A removable glass cover had been used to study the effects of glazed and unglazed PVT panel situations. The research was conducted in February (winter) and July (summer), and March for daily solar radiation effects on efficiencies. The results indicated that electrical and thermal gains increased by the incre
... Show MoreThe moisture sorption isotherms of Mefenamic acid tablets were investigated by measuring the experimental equilibrium moisture content (EMC) using the static method of saturated salt solutions at three temperatures (25, 35, and 45°C) and water activity range from 0.056 to 0.8434. The results showed that EMC increased when relative humidity increased and the sorption capacity decreased, the tablets became less hygroscopic and more stable when the temperature increased at constant water activity. The sorption curves had a sigmoid shape, type II according to Brunauer’s classification. The hysteresis effect was significant along with the whole sorption process. The results were fitted to three models: Oswin, Smith, and Guggen
... Show MoreA novel welded demountable shear connector for sustainable steel-concrete composite structures is proposed. The proposed connector consists of a grout-filled steel tube bolted to a compatible partially threaded stud, which is welded on a steel section. This connector allows for an easy deconstruction at the end of the service life of a building, promoting the reuse of both the concrete slabs and the steel sections. This paper presents the experimental evaluation of the structural behavior of the proposed connector using a horizontal pushout test arrangement. The effects of various parameters, including the tube thickness, the presence of grout infill, and the concrete slab compressive strength, were assessed. A nonlinear finite element mode
... Show MoreThis article will address autoclave design considerations and
manufacturing working with high pressure low temperature
supercritical drying technique to produce silica aerogel. The design
elects carbon dioxide as a supercritical fluid (31.7 oC and 72.3 bar).
Both temperature and pressure have independently controlling
facility through present design. The autoclave was light weight (4.5
kg) and factory-made from stainless steel. It contains a high pressure
window for monitoring both transfer carbon dioxide gas to liquid
carbon dioxide and watching supercritical drying via aerogel
preparation process. In this work aerogel samples were prepared and
the true apparent densities, total pore volume and pore size