This investigation integrates experimental and numerical approaches to study a novel solar air heater aimed at achieving an efficient design for a solar collector suitable for drying applications under the meteorological conditions of Iraq. The importance of this investigation stems from the lack of optimal exploitation of solar energy reaching the solar collector, primarily attributable to elevated thermal losses despite numerous designs employed in such solar systems. Consequently, enhancing the thermal performance of solar collectors, particularly those employed in crop drying applications, stands as a crucial focal point for researchers within this domain. Two identical double-pass solar air heaters were designed and constructed for this research. Two types of copper foam sheets with different pore densities, specifically 10 PPI and 40 PPI, were used as absorber plates. The novel solar air heater was compared with a conventional solar air heater equipped with a flat absorber plate based on thermal performance. The effects of the mass flow rate, the air gap of the solar collector, and solar irradiation were examined on various parameters, including the outlet air temperature, solar collector efficiency, and pressure drop across the solar collectors. The results demonstrated that the double-pass solar air heater equipped with a 10 PPI porous absorber plate exhibited superior thermal performance compared to both the double-pass solar air heater with a 40 PPI absorber plate and the conventional absorber plates. Consequently, it can be considered suitable for drying applications. Furthermore, a comparison of the experimental findings with the results obtained from previous studies showed a good agreement.
Schiff base ligand (H2CANPT) was prepared by two steps: first, by the condensation of curcumin with 4-amino antipyrin produces4,4'-(((1E,3Z,5Z,6E)-1,7-bis(4-hydroxy-3- methoxyphenyl)hepta-1,6-diene-3,5-diylidene)bis(azanylylidene))bis(1,5-dimethyl-2-phenyl- 1,2-dihydro-3H-pyrazol-3-one) (CANP). Second, by the condensation of (CANP) with L-tyrosine produces2,2'-(((3Z,3'Z)-(((1E,3Z,5Z,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta 1,6-diene-3,5-diylidene)bis(azanylylidene))bis(1,5-dimethyl-2-phenyl-1,2-dihydro-3-H-pyrazole- 4-yl-3-ylidene))bis(azanylylidene))bis(3-(4-hydroxyphenyl)propanoic acid) (H2CANPT). The resulted Schiff comported as hexadentate coordinated with (N4O2) atoms, then it was treated with some transition and non-transaction met
... Show MoreThis study was designed to investigate the hepatoprotective activity and antioxidant enzymes of purified Bauhinia variegate leaves extract and purified flowers extract were administered (200 mg/kg, orally once daily) to reduce the effect of carbon tetrachloride-damage in rat’sliver for three weeks. Thereafter, the levels of some serum biochemical factorssuch as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase,and the activity of three different antioxidant enzymes (glutathione, superoxide dismutase, and catalase) were investigated.Liver homogenate can used to estimated antioxidant parameters: glutathione, superoxide dismutase and catalase. The purified Bauhinia variegate leaves and purified flowers significantly
... Show MoreIn this paper, an experimental analysis of conventional air-cooled and microchannel condensers in automotive vapor compression refrigeration cycle concerning heat transfer coefficient and energy using R134a as a refrigerant was presented. The performance of two condensers and cycles tested regarding ambient temperature which it was varied from 40oC to 65oC, while the indoor temperature and load have been set to be 23oC and 2200 W respectively. Results showed that the microchannel condenser has 224 % and 77 % higher refrigerant side and air side heat transfer coefficient respectively than the coefficients of the conventional condenser. Thus, the COP, in case of using the microchannel
... Show MoreThis work predicts the effect of thermal load distribution in polymer melt inside a mold and a die during injection and extrusion processes respectively on the structure properties of final product. Transient thermal and structure models of solidification process for polycarbonate polymer melt in a steel mold and die are studied in this research. Thermal solution obtained according to solidify the melt from 300 to 30Cand Biot number of 16 and 112 respectively for the mold and from 300 to 30 Cand Biot number of 16 for die. Thermal conductivity, and shear and Young Modulus of polycarbonate are temperature depending. Bonded contact between the polycarbonate and the steel surfaces is suggested to transfer the thermal load. The temperat
... Show MoreCrabs belong to the crustacean family (Decapods crustacean), and their shells contain natural ingredients from which the bioactive compounds are derived. It has been used as folklore medicine in cancer treatment. We investigate the possible anti-inflammatory and anti-oxidant effects for crab shells and whole crabs. Thirty-six rats (150–200 gm) from both sexes were used, divided into six groups, the anti-inflammatory and anti-oxidant activity measured using cotton pellet induce granuloma model. Detection of tumor necrosis factor alpha (TNF α), Interleukin 1 beta (IL-1β), superoxide (SOD), and malondialdehyde (MDA) levels using ELISA Kits. The data analysis by one-way ANOVA followed by the Tukey test. Values are significant at (p < 0.05).
... Show MoreThe design and implementation of an active router architecture that enables flexible network programmability based on so-called "user components" will be presents. This active router is designed to provide maximum flexibility for the development of future network functionality and services. The designed router concentrated mainly on the use of Windows Operating System, enhancing the Active Network Encapsulating Protocol (ANEP). Enhancing ANEP gains a service composition scheme which enables flexible programmability through integration of user components into the router's data path. Also an extended program that creates and then injects data packets into the network stack of the testing machine will be proposed, we will call this program
... Show MoreThe objective of this work is to investigate the performance of a conventional three phase induction motor supplied by unbalanced voltages. An effort to study the motor steady state performance under this disturbance is introduced. Using per phase equivalent circuit analysis with the concept of symmetrical components approach, the steady state performance is theoretically calculated. Also, a model for the induction motor with the MATLAB/Simulink SPS tools has been implemented and steady state results were obtained. Both results are compared and show good correlation as well. The simulation model is introduced to support and enhance electrical engineers with a complete understanding for the steady state performance of a fully loaded induc
... Show MoreThe hydraulic behavior of the flow can be changed by using large-scale geometric roughness elements in open channels. This change can help in controlling erosions and sedimentations along the mainstream of the channel. Roughness elements can be large stone or concrete blocks placed at the channel's bed to impose more resistance in the bed. The geometry of the roughness elements, numbers used, and configuration are parameters that can affect the flow's hydraulic characteristics. In this paper, velocity distribution along the flume was theoretically investigated using a series of tests of T-shape roughness elements, fixed height, arranged in three different configurations, differ in the number of lines of roughness element
... Show MoreIn this research, carbon nanotubes (CNTs) is prepared through the Hummers method with a slight change in some of the work steps, thus, a new method has been created for preparing carbon nanotubes which is similar to the original Hummers method that is used to prepare graphene oxide. Then, the suspension carbon nanotubes is transferred to a simple electrode position platform consisting of two electrodes and the cell body for the coating and reduction of the carbon nanotubes on ITO glass which represents the cathode electrode while platinum represents the anode electrode. The deposited layer of carbon nanotubes is examined through the scanning electron microscope technique (SEM), and the images throughout the research show the
... Show MoreAlthough renewable energy systems have become an interesting global issue, it is not continuous either daily or seasonally. Latent heat energy storage (LHES) is one of the suitable solutions for this problem. LHES becomes a basic element in renewable energy systems. LHES compensate for the energy lack when these systems are at low production conditions. The present work considered a shell and tube LHES for numerical investigation of the tube rotation influence on the melting process. The simulation and calculations were carried out using ANSYS Fluent software. Paraffin wax represents the phase change material (PCM) in this work, while water was selected to be the heat transfer fluid (HTF). The calculations were carried o
... Show More