Preferred Language
Articles
/
alkej-8
Fuzzy Wavenet (FWN) classifier for medical images
...Show More Authors

 

    The combination of wavelet theory and neural networks has lead to the development of wavelet networks. Wavelet networks are feed-forward neural networks using wavelets as activation function. Wavelets networks have been used in classification and identification problems with some success.

  In this work we proposed a fuzzy wavenet network (FWN), which learns by common back-propagation algorithm to classify medical images. The library of medical image has been analyzed, first. Second, Two experimental tables’ rules provide an excellent opportunity to test the ability of fuzzy wavenet network due to the high level of information variability often experienced with this type of images.

 We have known that the wavelet transformation is more accurate in small dimension problem. But image processing is large dimension problem then we used neural network. Results are presented on the application on the three layer fuzzy wavenet to vision system. They demonstrate a considerable improvement in performance by proposed two table’s rule for fuzzy and deterministic dilation and translation in wavelet transformation techniques.

    

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
A Modified Approach by Using Prediction to Build a Best Threshold in ARX Model with Practical Application
...Show More Authors

The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.

In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Active Vibration Suppression of Smart Cantilever Beam with Sliding Mode Observer Using Two Piezoelectric Patches
...Show More Authors

This paper presents a vibration suppression control design of cantilever beam using two piezoelectric ‎patches. One patch was used as ‎an actuator element, while the other was used as a sensor. The controller design was designed via the balance realization reduction method to elect the reduced order model that is most controllable and observable. ‎the sliding mode observer was designed to estimate six states from the reduced order model but three states are only used in the control law. Estimating a number of states larger than that used is in order to increase the estimation accuracy. Moreover, the state ‎estimation error is proved bounded. An ‎optimal LQR controller is designed then using the ‎estimated states with the slid

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
A Modified Support Vector Machine Classifiers Using Stochastic Gradient Descent with Application to Leukemia Cancer Type Dataset
...Show More Authors

Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Arabic Speech Classification Method Based on Padding and Deep Learning Neural Network
...Show More Authors

Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
A Fuzzy Logic Controller Based Vector Control of IPMSM Drives
...Show More Authors

This paper explores a fuzzy-logic based speed controller of an interior permanent magnet synchronous motor (IPMSM) drive based on vector control. PI controllers were mostly used in a speed control loop based field oriented control of an IPMSM. The fundamentals of fuzzy logic algorithms as related to drive control applications are illustrated. A complete comparison between two tuning algorithms of the classical PI controller and the fuzzy PI controller is explained. A simplified fuzzy logic controller (FLC) for the IPMSM drive has been found to maintain high performance standards with a much simpler and less computation implementation. The Matlab simulink results have been given for different mechanical operating conditions. The simulated

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Properties of the Adjoint Operator of a General Fuzzy Bounded Operator
...Show More Authors

Our goal in the present paper is to recall the concept of general fuzzy normed space and its basic properties in order to define the adjoint operator of a general fuzzy bounded operator from a general fuzzy normed space V into another general fuzzy normed space U. After that basic properties of the adjoint operator were proved then the definition of fuzzy reflexive general fuzzy normed space was introduced in order to prove that every finite dimensional general fuzzy normed space is fuzzy reflexive.

View Publication
Scopus (10)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Nov 19 2018
Journal Name
Arab Science Heritage Journal
الطب الطب العربي وأثره على المعرفة الطبية في أوربا
...Show More Authors

This Kind of study has a special importance. Great numbers of Arab Muslims share a lot of their work, their Trans lations & new additions to scientific heritage. They facilitate the indirect way for Europeans to got Greek scientific knowledge. Ibn Sina classified & collected in his book (Law) Galen`s medical publications & he clarified, arranged & make them easy to understand.

View Publication Preview PDF
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Isotherms and Kinetics Study for Adsorption of Nitrogen from Air using Zeolite Li-LSX to Produce Medical Oxygen
...Show More Authors

This research investigates the adsorption isotherm and adsorption kinetics of nitrogen from air using packed bed of Li-LSX zeolite to get medical oxygen. Experiments were carried out to estimate the produced oxygen purity under different operating conditions: input pressure of 0.5 – 2.5 bar, feed flow rate of air of 2 – 10 L.min-1 and packing height of 9-16 cm. The adsorption isotherm was studied at the best conditions of input pressure of 2.5 bar, the height of packing 16 cm, and flow rate 6 Lmin-1 at ambient temperature, at these conditions   the highest purity of oxygen by this system 73.15 vol % of outlet gas was produced. Langmuir isotherm was the best models representing the experimental data., and the m

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Aug 31 2022
Journal Name
Al-kindy College Medical Journal
Assessment of Awareness And Knowledge among Medical Students Regarding Radiation Exposure from Common Diagnostic Imaging Procedures: Radiation exposure awareness among medical students
...Show More Authors

Objective: to assess the awareness and knowledge of our medical students regarding dose levels of imaging procedures and radiation safety issues, and to conclude how the curriculum of clinical radiology in the college medical program impacts such knowledge.

Subjects and methods:  this is a cross-sectional study conducted among 150 medical students in Alkindy College of Medicine between January 2021 to July 2021, regardless of their age or gender. The study included six grades according to the year 2020-2021. A questionnaire consisting of 12 multiple-choice questions was conducted via an online survey using Google Forms. The questions were divided into two parts

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon May 01 2023
Journal Name
Journal Of Economics And Administrative Sciences (jeas)
Using Statistical Methods to Increase the Contrast Level in Digital Images
...Show More Authors

This research deals with the use of a number of statistical methods, such as the kernel method, watershed, histogram and cubic spline, to improve the contrast of digital images. The results obtained according to the RSME and NCC standards have proven that the spline method is the most accurate in the results compared to other statistical methods