Preferred Language
Articles
/
alkej-844
Yearly Energy, Exergy, and Environmental (3E) Analyses of A Photovoltaic Thermal Module and Solar Thermal Collector in Series
...Show More Authors

The annual performance of a hybrid system of a flat plate photovoltaic thermal system and a solar thermal collector (PVT/ST) is numerically analyzed from the energy, exergy, and environmental (CO2 reduction) viewpoints. This system can produce electricity and thermal power simultaneously, with higher thermal power and exergy compared to conventional photovoltaic thermal systems. For this purpose, a 3D transient numerical model is developed for investigating the system's performance in four main steps: (1) investigating the effects of the mass flow rate of the working fluid (20 to 50 kg/h) on the temperature behavior and thermodynamic performance of the system, (2) studying the impacts of using glass covers on the different parts of the system, (3) evaluating the annual energy and exergy analyses of the system under Mashhad weather conditions, and (4) examining the CO2 reduction by using the proposed system. The results show that for the (glazed) PVT and (glazed) ST systems, increasing the mass flow rate of the working fluid from 20 to 50 kg/h results in 22% and 1.5% improvements in both thermal and electrical power, respectively. However, the thermal exergy of the system decreases by 40.1%. Furthermore, the (glazed) PVT/(glazed) ST systems generate approximately 86% and 264% more thermal power and energy than the PVT/ST systems, respectively. Using a (glazed) PVT/(glazed) ST system with a working fluid’s mass flow rate of 50 kg/h results in maximum thermal and electrical efficiencies of 40.7% and 16.22%, respectively. According to the annual analysis, the highest average thermal and electrical power, equal to approximately 338.3 and 24 W, respectively, is produced in August. The amount of CO2 reduction increases by increasing the mass flow rate and using a glass cover. The PVT/(glazed)ST system has the potential to reduce CO2 emissions by 426.3 kg per year. 

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 30 2008
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Optimal Quantitave and Distributive Analysis of Thermal Pollution due to Heated Water Released to Rivers
...Show More Authors

To reduce the effects of discharging heated water disposed into a river flow by a single thermal source, two parameters were changed to get the minimum effect using optimization. The first parameter is to distribute the total flow of the heated water between two disposal points (double source) instead of one and the second is to change the distance between these two points. In order to achieve the solution, a two dimensional numerical model was developed to simulate and predict the changes in temperature distribution in the river due to disposal of the heated water using these two points of disposal.
MATLAB-7 software was used to build a program that could solve the governing partial equations of thermal pollution in rivers by using t

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 04 2016
Journal Name
Baghdad Science Journal
Transition Metal Complexes with Tridentate Ligand: Preparation, Spectroscopic Characterization, Thermal Analysis and Structural Studies
...Show More Authors

New series of metal ions complexes have been prepared from the new ligand 1,5- Dimethyl-4- (5-oxohexan-2- ylideneamino) -2-phenyl- 1H-pyrazol-3 (2H)-one derived from 2,5-hexandione and 4-aminophenazone. Then, its V(IV), Ni(II), Cu(II), Pd(II), Re(V) and Pt(IV) complexes prepared. The compounds have been characterized by FT-IR, UV-Vis, mass and 1H and 13C-NMR spectra, TGA curve, magnetic moment, elemental microanalyses (C.H.N.O.), chloride containing, Atomic absorption and molar conductance. Hyper Chem-8 program has been used to predict structural geometries of compounds in gas phase, the heat of formation, (binding, total and electronic energy) and dipole moment at 298 K.

View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sat Sep 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Parametric study of thermal behavior of thrust chamber cooling channels
...Show More Authors

A numerical investigation is adopted for two dimensional thermal analysis of rocket thrust chamber wall (RL10), employing finite difference model with iterative scheme (implemented under relaxation factor of 0.9 for convergence) to compute temperature distribution within thrust chamber  wall (which is composed of Nickel and Copper layers). The analysis is conducted for different boundary conditions: only convection boundary conditions then combined radiation, convection boundary conditions also for  different aspect ratio (AR) of cooling channel. The results show that Utilizing cooling channels of high aspect ratio leads to decrease in temperature variation across thrust chamber wall, while no effects on heat transferred to the

... Show More
View Publication Preview PDF
Publication Date
Sun Sep 02 2012
Journal Name
Baghdad Science Journal
Study Of Factors Affecting The Thermal Conductivity Of Iraqi Bentonite
...Show More Authors

Thermal conductivity of compacted bentonite is one of the most important properties where this type of clay is proposed for use as a buffer material. In this study, Lee's disc method was used to measure the thermal conductivity of compacted bentonite specimens. The experimental results have been analyzed to observe the three major factors affecting the thermal conductivity of bentonite buffer material. While the clay density reaches to a target value, the measurement is taken to evaluate the thermal conductivity. By repeating this procedure, a relationship between clay dry density and thermal conductivity has been established in specimens after adjusting the water contents of the bentonite by placing its specimens in a drying oven for diffe

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed May 01 2019
Journal Name
Materials Science And Engineering
Effect of nanoparticles on thermal conductivity of epoxy resin system
...Show More Authors
Abstract<p>In this paper the effect of mixing TiO2 nanoparticles with epoxy resin is studied. The TiO2 nanoparticles would be synthesis and characterized by scanning electron microscopy (SEM), XRD FTIR, for two particle sizes of 50 and 25 nm. The thermal conductivity is measured with and without composite epoxy resin; the results showed that the thermal conductivity was increased as nanoparticle concentration increased too. The thermal conductivity was increased as particle size decreased.</p>
Preview PDF
Scopus (9)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Solid State Communications
Influence of In-dopant on the optoelectronic properties of thermal evaporated CuAlTe2 films
...Show More Authors

In the current study, CuAl0.7In0.3Te2 thin films with 400 nm thickness were deposited on glass substrates using thermal evaporation technique. The films were annealed at various annealing temperatures of (473,573,673 and 773) K. Furthermore, the films were characterized by X-ray Diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and Ultra violet-visible (UV–vis). XRD patterns confirm that the films exhibit chalcopyrite structure and the predominant diffraction peak is oriented at (112). The grain size and surface roughness of the annealed films have been reported. Optical properties for the synthesized films including, absorbance, transmittance, dielectric constant, and refr

... Show More
View Publication
Scopus (8)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Solid State Communications
Influence of In-dopant on the optoelectronic properties of thermal evaporated CuAlTe2 films
...Show More Authors

Scopus (8)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Jun 07 2018
Journal Name
Applied Physics A
Effect of incorporation of conductive fillers on mechanical properties and thermal conductivity of epoxy resin composite
...Show More Authors

View Publication
Crossref (56)
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Mathematical Modeling of a Hollow Fiber Module Used in Pressure-Retarded Osmosis Process
...Show More Authors

   Pressure retarded osmosis (PRO) can be considered as one of the methods for utilizing osmotic power, which is a membrane-based technology. Mathematical modeling plays an essential part in the development and optimization of PRO energy-generating systems. In this research, a mathematical model was developed for the hollow fiber module to predict the power density and the permeate water flux theoretically. Sodium chloride solution was employed as the feed and draw solution. Different operating parameters, draw solution concentration (1 and 2 M), the flow rate of draw solution (2, 3, and 4 L/min), and applied hydraulic pressure difference (0 - 90 bar) was used to evaluate the performance of PRO process of a hollow fiber module. The eff

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Sep 06 2009
Journal Name
Baghdad Science Journal
A note on an –module with -pure intersection property
...Show More Authors

Let be a ring. Given two positive integers and , an module is said to be -presented, if there is an exact sequence of -modules with is -generated. A submodule of a right -module is said to be -pure in , if for every -Presented left -module the canonical map is a monomorphism. An -module has the -pure intersection property if the intersection of any two -pure submodules is again -pure. In this paper we give some characterizations, theorems and properties of modules with the -pure intersection property.

View Publication
Crossref