Hand gestures are currently considered one of the most accurate ways to communicate in many applications, such as sign language, controlling robots, the virtual world, smart homes, and the field of video games. Several techniques are used to detect and classify hand gestures, for instance using gloves that contain several sensors or depending on computer vision. In this work, computer vision is utilized instead of using gloves to control the robot's movement. That is because gloves need complicated electrical connections that limit user mobility, sensors may be costly to replace, and gloves can spread skin illnesses between users. Based on computer vision, the MediaPipe (MP) method is used. This method is a modern method that is discovered by Google. This method is described by detecting and classifying hand gestures by identifying 21 three-dimensional points on the hand, and by comparing the dimensions of those points. This is how the hand gestures are classified. After detecting and classifying the hand gestures, the system controls the tracked robot through hand gestures in real time, as each hand gesture has a specific movement that the tracked robot performs. In this work, some important paragraphs concluded that the MP method is more accurate and faster in response than the Deep Learning (DL) method, specifically the Convolution Neural Network (CNN). The experimental results shows the accuracy of this method in real time through the effect of environmental elements decreases in some cases when environmental factors change. Environmental elements are such light intensity, distance, and tilt angle (between the hand gesture and camera).The reason for this is that in some cases, the fingers are closed together, and some fingers are not fully closed or opened and the accuracy of the camera used is not good with the changing environmental factors. This leads to the inability of the algorithm used to classify hand gestures correctly (the classification accuracy decrease), and thus response time of the tracked robot's movement increases. That does not present possibility for the system to determine whether the finger is closed or opened.
Authentication is the process of determining whether someone or something is, in fact, who or what it is declared to be. As the dependence upon computers and computer networks grows, the need for user authentication has increased. User’s claimed identity can be verified by one of several methods. One of the most popular of these methods is represented by (something user know), such as password or Personal Identification Number (PIN). Biometrics is the science and technology of authentication by identifying the living individual’s physiological or behavioral attributes. Keystroke authentication is a new behavioral access control system to identify legitimate users via their typing behavior. The objective of this paper is to provide user
... Show MoreThe fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was t
... Show MoreArabic text categorization for pattern recognitions is challenging. We propose for the first time a novel holistic method based on clustering for classifying Arabic writer. The categorization is accomplished stage-wise. Firstly, these document images are sectioned into lines, words, and characters. Secondly, their structural and statistical features are obtained from sectioned portions. Thirdly, F-Measure is used to evaluate the performance of the extracted features and their combination in different linkage methods for each distance measures and different numbers of groups. Finally, experiments are conducted on the standard KHATT dataset of Arabic handwritten text comprised of varying samples from 1000 writers. The results in the generatio
... Show MoreThe quality of Global Navigation Satellite Systems (GNSS) networks are considerably influenced by the configuration of the observed baselines. Where, this study aims to find an optimal configuration for GNSS baselines in terms of the number and distribution of baselines to improve the quality criteria of the GNSS networks. First order design problem (FOD) was applied in this research to optimize GNSS network baselines configuration, and based on sequential adjustment method to solve its objective functions.
FOD for optimum precision (FOD-p) was the proposed model which based on the design criteria of A-optimality and E-optimality. These design criteria were selected as objective functions of precision, whic
... Show MoreToday with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy that it is critical to find topics from tweets. While topic modeling algorithms such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) are originally designed to derive topics from large documents such as articles, and books. They are often less efficient when applied to short text content like Twitter. Luckily, Twitter has many features that represent the interaction between users. Tweets have rich user-generated hashtags as keywords. In this paper, we exploit the hashtags feature to improve topics learned
Speech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Kra
Iris research is focused on developing techniques for identifying and locating relevant biometric features, accurate segmentation and efficient computation while lending themselves to compression methods. Most iris segmentation methods are based on complex modelling of traits and characteristics which, in turn, reduce the effectiveness of the system being used as a real time system. This paper introduces a novel parameterized technique for iris segmentation. The method is based on a number of steps starting from converting grayscale eye image to a bit plane representation, selection of the most significant bit planes followed by a parameterization of the iris location resulting in an accurate segmentation of the iris from the origin
... Show More