Incremental sheet forming (ISF) process offers a high degree of flexibility in the manufacturing of different sheet parts, which makes it an ideal candidate for prototype parts as well as efficient at fabricating various customized products at low production costs compared to traditionally used processes. However, parts produced in this process exhibit notable geometrical inaccuracy and considerable thickness reduction. In this paper, the single point incremental sheet forming variant of the process has been implemented to manufacture a highly customized cranial implant starting from the computed tomography (CT) scan data of the patient's anatomy. A methodology, from the modeling to the realization of the implant, is presented and discussed. The primary aim of the research was to analyze and study the effect of the multistage toolpath strategy compared to the traditional single-stage toolpath in terms of geometrical accuracy and thickness distribution. The final results show that the part formed in the multistage toolpath strategy exhibited a more uniform thickness distribution compared to the single-stage approach. Regarding the geometrical accuracy, the deviation analysis between the nominal and actual data has revealed that the multistage forming has significantly enhanced the final geometrical accuracy of the formed part.
In this study, Yogurt was dried and milled, then shaked with distilled water to remove the soluble materials, then again dried and milled. Batch experiments were carried out to remove hexavalent chromium from aqueous solutions. Different parameters were optimized such as amount of adsorbent, treatment time, pH and concentration of adsorbate. The concentrations of Cr6+ in solutions are determined by UV-Visible spectrophotometer. Maximum percentage removal of Cr6+ was 82% at pH 2. Two equilibrium adsorption isotherms mechanisms are tested Langmuir and Freundlich, the results showed that the isotherm obeyed to Freundlich isotherm. Kinetic models were applied to the adsorption of Cr6+ ions on the adsorbents, ps
... Show MoreThe study included isolation and diagnosis of fungi that infect Foeniculum vulgare Mill planted in the Department of Drugs and Medicinal Plants, Pharmacy College - University of Baghdad, different symptoms such as wilting and yellowing, stunting on the plants were observed fungi: Alternaria alternata, Rhizoctonia solani, Phoma herbarum and Fusarium oxysporum, The disease incidence ranging between 5-10%. Studied the effect of Foeniculum vulgare plant seeds extract against Alternaria alternata, Rhizoctonia solani, Phoma herbarum and Fusarium oxysporum,where tested the concentrations 0,2.5 and 5% of alcoholic extract of fennel seeds showed ef
... Show MoreThis paper is interested in certain subclasses of univalent and bi-univalent functions concerning to shell- like curves connected with k-Fibonacci numbers involving modified Sigmoid activation function θ(t)=2/(1+e^(-t) ) ,t ≥0 in unit disk |z|<1 . For estimating of the initial coefficients |c_2 | , |c_3 |, Fekete-Szego ̈ inequality and the second Hankel determinant have been investigated for the functions in our classes.
Phenol is one of the worst-damaging organic pollutants, and it produces a variety of very poisonous organic intermediates, thus it is important to find efficient ways to eliminate it. One of the promising techniques is sonoelectrochemical processing. However, the type of electrodes, removal efficiency, and process cost are the biggest challenges. The main goal of the present study is to investigate the removal of phenol by a sonoelectrochemical process with different anodes, such as graphite, stainless steel, and titanium. The best anode performance was optimized by using the Taguchi approach with an L16 orthogonal array. the degradation of phenol sonoelectrochemically was investigated with three process parameters: current de
... Show MoreGeneral Background: Breast cancer is the most prevalent cancer affecting women, with increasing incidence worldwide. Specific Background: Recent research has focused on the role of epigenetic changes in DNA damage, repair mechanisms, and the potential therapeutic effects of probiotics. Probiotics have shown promise in promoting tissue regeneration and DNA repair. Knowledge Gap: However, the precise impact of probiotics on DNA repair in cancer cells, specifically breast cancer cells, remains underexplored. Aims: This study aimed to evaluate the effects of probiotics on DNA damage repair in AMJ13 Iraqi breast cancer cells and assess the cytotoxic effects of probiotics on these cells. Results: Using the comet assay, we found significan
... Show MoreThe objective of this paper is to improve the general quality of infrared images by proposes an algorithm relying upon strategy for infrared images (IR) enhancement. This algorithm was based on two methods: adaptive histogram equalization (AHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE). The contribution of this paper is on how well contrast enhancement improvement procedures proposed for infrared images, and to propose a strategy that may be most appropriate for consolidation into commercial infrared imaging applications.
The database for this paper consists of night vision infrared images were taken by Zenmuse camera (FLIR Systems, Inc) attached on MATRIC100 drone in Karbala city. The experimental tests showed sign
Globally, buildings use about 40% of energy. Many elements, such as the physical properties of the structure, the efficiency of the cooling and heating systems, the activity of the occupants, and the building’s sustainability, affect the energy consumption of a building. It is really difficult to predict how much energy a building will need. To improve the building’s sustainability and create sustainable energy sources to reduce carbon dioxide emissions from fossil fuel combustion, estimating the building's energy use is necessary. This paper explains the energy consumed in the lecture building of the Al-Khwarizmi College of Engineering, University of Baghdad (UOB), Baghdad, Iraq. The weather data and the building construction informati
... Show MoreThe current study focuses on utilizing artificial intelligence (AI) techniques to identify the optimal locations of production wells and types for achieving the production company’s primary objective, which is to increase oil production from the Sa’di carbonate reservoir of the Halfaya oil field in southeast Iraq, with the determination of the optimal scenario of various designs for production wells, which include vertical, horizontal, multi-horizontal, and fishbone lateral wells, for all reservoir production layers. Artificial neural network tool was used to identify the optimal locations for obtaining the highest production from the reservoir layers and the optimal well type. Fo
The complexity and partially defined nature of jet grouting make it hard to predict the performance of grouted piles. So the trials of cement injection at a location with similar soil properties as the erecting site are necessary to assess the performance of the grouted piles. Nevertheless, instead of executing trial-injected piles at the pilot site, which wastes money, time, and effort, the laboratory cement injection devices are essential alternatives for evaluating soil injection ability. This study assesses the performance of a low-pressure laboratory grouting device by improving loose sandy soil injected using binders formed of Silica Fume (SF) as a chemical admixture (10% of Ordinary Portland Cement OPC mass) to di
... Show More