Preferred Language
Articles
/
alkej-814
Comparative Transfer Learning Models for End-to-End Self-Driving Car
...Show More Authors

Self-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steering angle of a self-driving vehicle that is suitable to be applied to embedded automotive technologies with limited performance. Three well-known pre-trained models were compared in this study: AlexNet, ResNet18, and DenseNet121.

Transfer learning was utilized by modifying the final layer of pre-trained models in order to predict the steering angle of the vehicle. Experiments were conducted on the dataset collected from two different tracks. According to the study's findings, ResNet18 and DenseNet121 have the lowest error percentage for steering angle values. Furthermore, the performance of the modified models was evaluated on predetermined tracks. ResNet18 outperformed DenseNet121 in terms of accuracy, with less deviation from the center of the track, while DenseNet121 demonstrated greater adaptability across multiple tracks, resulting in better performance consistency.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 01 2012
Journal Name
مجلة بحوث كلية التربية الاساسية
Essence - Appearance and it’s Relation with Self -efficacy and Scholastic Achievement for Preparatory School Students
...Show More Authors

الذات والتحصيل الدراسي . وقد استخدمت الباحثة المنهج الوصفي التحليلي، وبلغت عينة الدراسة (500) طالبًا وطالبة، تم اختيارهم بالطريقة الطبقية العشوائية وهي تمثل (15%) من مجتمع الدراسة البالغ (3328) طالباً وطالبة من طلبة المرحلة الإعدادية واستخدمت الباحثة مقياسين تم بناء مقياس لقياس الجوهر والمظهر وتبني مقياس فاعلية الذات بعد إن قامت بترجمته وتعريبه وجعله ملائم للبيئة العراقية، كم تم استخراج درجات التحصيل الدراسي للع

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 06 2014
Journal Name
Journal Of Educational And Psychological Researches
Self-determintion and Emotional Experience and their Relationship with achievement striving for the college Students
...Show More Authors

Human beings have an innate and natural aim to achieve their self-interests and to show their ability to overcome challenges in a better way, therefore the move towards self determination is expressed by intrinsic motivation. The desire of absorbing in this task is to enjoy the task in it self and benefitting from it such a motivation is the desire rooted in human nature to judge and choose in which individual is conscious in his self, abilities and adequacy that help him in control the different  situations of life passed by him. His choices and actions are voluntary  and non-restricted to intervention or external control because control is inner and subjective, while his behavior is self-regulated with the feeling of

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Bio Web Of Conferences
Forecasting Cryptocurrency Market Trends with Machine Learning and Deep Learning
...Show More Authors

Cryptocurrency became an important participant on the financial market as it attracts large investments and interests. With this vibrant setting, the proposed cryptocurrency price prediction tool stands as a pivotal element providing direction to both enthusiasts and investors in a market that presents itself grounded on numerous complexities of digital currency. Employing feature selection enchantment and dynamic trio of ARIMA, LSTM, Linear Regression techniques the tool creates a mosaic for users to analyze data using artificial intelligence towards forecasts in real-time crypto universe. While users navigate the algorithmic labyrinth, they are offered a vast and glittering selection of high-quality cryptocurrencies to select. The

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Revista Iberoamericana De PsicologÍa Del Ejercicio Y El Deporte Vol. 18 No 1 Pp. 117-121
THE EFFECT OF SPECIAL EXERCISES ACCORDING TO THE DIFFERENTIATED TEACHING METHOD ON MENTAL MOTIVATION AND LEARNING THE SKILLS OF BASKETBALL AND SHOOTING FOR FEMALE STUDENTS
...Show More Authors

Scopus (1)
Scopus
Publication Date
Thu Nov 17 2022
Journal Name
Journal Of Information And Optimization Sciences
Hybrid deep learning model for Arabic text classification based on mutual information
...Show More Authors

View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Journal Européen Des Systèmes Automatisés​
An IoT and Machine Learning-Based Predictive Maintenance System for Electrical Motors
...Show More Authors

The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com

... Show More
View Publication
Scopus (23)
Crossref (13)
Scopus Crossref
Publication Date
Mon Oct 30 2023
Journal Name
Traitement Du Signal
A Comprehensive Review on Machine Learning Approaches for Enhancing Human Speech Recognition
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Wed Oct 01 2025
Journal Name
Journal Of Physical Education
The Effect of Varied Teaching Strategies on Learning Backstroke Swimming for Students
...Show More Authors

View Publication
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Constructing a Software Tool for Detecting Face Mask-wearing by Machine Learning
...Show More Authors

       In the pandemic era of COVID19, software engineering and artificial intelligence tools played a major role in monitoring, managing, and predicting the spread of the virus. According to reports released by the World Health Organization, all attempts to prevent any form of infection are highly recommended among people. One side of avoiding infection is requiring people to wear face masks. The problem is that some people do not incline to wear a face mask, and guiding them manually by police is not easy especially in a large or public area to avoid this infection. The purpose of this paper is to construct a software tool called Face Mask Detection (FMD) to detect any face that does not wear a mask in a specific

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Nov 21 2022
Journal Name
Sensors
Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets
...Show More Authors

Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes

... Show More
View Publication
Scopus (30)
Crossref (25)
Scopus Clarivate Crossref