Preferred Language
Articles
/
alkej-801
Kinetics of Electrochemical Removal of Nickel using Bio-electrochemical Reactor with Packed Bed Rotating Cylinder Cathode
...Show More Authors

The kinetics of nickel removal from aqueous solutions using a bio-electrochemical reactor with a packed bed rotating cylinder cathode was investigated. The effects of applied voltage, initial nickel concentration, the rotation speed of the cathode, and pH on the reaction rate constant (k) were studied. The results showed that the cathodic deposition occurred under mass transfer control for all values of the applied voltage used in this research. Accordingly, the relationship between concentration and time can be represented by a first-order equation. The rate constant was found to be dependent on the applied voltage, initial nickel concentration, pH, and rotation speed. It was increased as the applied voltage increased and decreased as the initial concentration increased. Its relation to the applied voltage can be fitted as follows:

where ko =0.01695 min-1 and -β=0.431. pH and rotation speed have two dissimilar effects on the rate constant. Increasing the pH from 3-6 leads to an increase in the rate constant, while a decrease in the rate constant beyond pH=6 has occurred. Increasing the rotation from 100 to 300 rpm results in an increase in the rate constant. However, the rate constant decreases significantly beyond a rotation speed of 300 rpm.

 

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Engineering
Removal of Fluoride Ions from Wastewater Using Green and Blue-green Algae Biomass in a Fluidized Bed System
...Show More Authors

The removal of fluoride ions from aqueous solution onto algal biomass as biosorbent in batch and continuous fluidized bed systems was studied. Batch system was used to study the effects of process parameters such as, pH (2-3.5), influent fluoride ions concentration (10- 50 mg/l), algal biomass dose (0–1.5 g/ 200 ml solution), to determine the best operating conditions. These conditions were pH=2.5, influent fluoride ions concentration= 10 mg/l, and algal biomass dose=3.5 mg/l. While, in continuous fluidized bed system, different operating conditions were used; flow rate (0.667- 0.800 l/min), bed depth (8-15 cm) corresponded to bed weight of (80- 150 g). The results show that the breakthrough time increases with the inc

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 30 2001
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Effect of Asphaltenes Removal on the Kinetics of Iraqi Reduced Crude Oil Hydrotreating
...Show More Authors

View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Heliyon
Adsorption of methyl violet dye onto a prepared bio-adsorbent from date seeds: isotherm, kinetics, and thermodynamic studies
...Show More Authors

View Publication Preview PDF
Scopus (116)
Crossref (116)
Scopus Clarivate Crossref
Publication Date
Tue Feb 22 2022
Journal Name
Watre
Subsurface Flow Phytoremediation Using Barley Plants for Water Recovery from Kerosene-Contaminated Water: Effect of Kerosene Concentration and Removal Kinetics
...Show More Authors

A phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu

... Show More
Crossref (10)
Crossref
Publication Date
Tue Feb 22 2022
Journal Name
Water
Subsurface Flow Phytoremediation Using Barley Plants for Water Recovery from Kerosene-Contaminated Water: Effect of Kerosene Concentration and Removal Kinetics
...Show More Authors

A phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu

... Show More
Scopus (12)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Ecological Engineering
Removal of Nitrate from Aqueous Solution by Bio-Calcium from Iraqi Eggshells
...Show More Authors

View Publication
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Mar 30 2003
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Electrochemical behavior of Anodized AA7075 Aluminum Alloy in 0.1M NaCl Solution as Investigated by Potentiostatic Polarization Ttechnique
...Show More Authors

View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Asian Journal Of Ournal Of Chemistry
Assessment of an Electrocoagulation Reactor for the Removal of Oil Content and Turbidity from Real Oily Wastewater Using Response Surface Method
...Show More Authors

Background: Large amounts of oily wastewater and its derivatives are discharged annually from several industries to the environment. Objective: The present study aims to investigate the ability to remove oil content and turbidity from real oily wastewater discharged from the wet oil's unit (West Qurna 1-Crude Oil Location/ Basra-Iraq) by using an innovated electrocoagulation reactor containing concentric aluminum tubes in a monopolar mode. Methods: The influences of the operational variables (current density (1.77-7.07 mA/cm2) and electrolysis time (10-40 min)) were studied using response surface methodology (RSM) and Minitab-17 statistical program. The agitation speed was taken as 200 rpm. Energy and electrodes consumption had been studi

... Show More
Preview PDF
Crossref (17)
Crossref
Publication Date
Thu Dec 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Effect of Acetic Acid on Electrochemical Behavior of Sealed AA2319-T3 Al-Alloys Anodized in Phosphoric Acid Electrolytes
...Show More Authors

Abstract

      The present study investigates the effect of acetic acid on corrosion behavior and its potential of hydrothermally sealed anodized AA2319-Al-alloys. Anodizing treatment was performed in stagnant phosphoric acid electrolyte with or without addition of acetic acid. Hydrothermal sealing was carried out in boiling water for each anodized specimen. The open circuit potential of the unsealed and sealed anodized samples was examined using open circuit potential measurement for the purpose of starting in scanning polarization diagrams. The potentiostatic polarization technique measurements were performed to assess corrosion behavior and sealing quality (i.e., degree of sealing) of

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Active Carbon from Date Stones for Phenol Oxidation in Trickle Bed Reactor, Experimental and Kinetic Study
...Show More Authors

The catalytic wet air oxidation (CWAO) of phenol has been studied in a trickle bed reactor

using  active  carbon  prepared  from  date  stones  as  catalyst  by  ferric  and  zinc  chloride activation (FAC and ZAC). The activated carbons were characterized by measuring their surface area and adsorption capacity besides conventional properties, and then checked for CWAO using a trickle bed reactor operating at different conditions (i.e. pH, gas flow rate, LHSV, temperature and oxygen partial pressure). The results showed that the active carbon (FAC and ZAC), without any active metal supported, gives the highest phenol conversion. The reaction network proposed account

... Show More
View Publication Preview PDF
Crossref (1)
Crossref