Preferred Language
Articles
/
alkej-678
Two-Stage Classification of Breast Tumor Biomarkers for Iraqi Women
...Show More Authors

Objective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.

Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are further classified into either malignant or benign. The collected 20 breast cancer features are utilized to test the performance of the proposed classification system with Leave-One-Out (LOO) cross validation and Synthetic Minority Over-Sampling Technique (SMOTE) to balance the classes. Furthermore, correlation-based feature selection (CFS) was employed in an exploratory analysis to find the best features for the 2-stage classification system.

Results: Classification accuracy of 94% for stage-1 and 100% for stage-2was achieved with a Naïve Bayesclassifier which outperformed other three methods. In addition, CFS selected small subset of features as being the best five features out of the all 20 features for both stage-1 and stage-2.

Conclusion: We achieved a high classification accuracy which is promising to help improve the early diagnosis of breast tumor. The outcome of this study also shows the importance of CA15-3protein in saliva and blood as well as carcinoembryonic antigen level and total protein in blood, and Estrogen hormone level in saliva, for predicting breast tumors.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Design and Implementation of an Automatic Control for Two Axis Tracking System for Applications of Concentrated Solar Thermal Power
...Show More Authors

The present work presents design and implementation of an automated two-axis solar tracking system using local materials with minimum cost, light weight and reliable structure. The tracking system consists of two parts, mechanical units (fixed and moving parts) and control units (four LDR sensors and Arduino UNO microcontroller to control two DC servomotors). The tracking system was fitted and assembled together with a parabolic trough solar concentrator (PTSC) system to move it according to information come from the sensors so as to keep the PTSC always perpendicular to sun rays. The experimental tests have been done on the PTSC system to investigate its thermal performance in two cases, with tracking system (case 1) and without trackin

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Dec 03 2022
Journal Name
Iraqi Journal Of Science
Detection of Spectral Reflective Changes for Temporal Resolution of Land Cover (LC) for Two Different Seasons in central Iraq
...Show More Authors

The purpose of the study is the city of Baghdad, the capital of Iraq, was chosen to study the spectral reflection of the land cover and to determine the changes taking place in the areas of the main features of the city using the temporal resolution of multispectral bands of the satellite Landsat 5 and 8 for MSS and OLI sensors respectively belonging to NASA and for the period 1999-2021, and calculating the increase and decrease in the basic features of Baghdad. The main conclusions of the study were, This study from 1999 to 2021 and in two different seasons: the Spring of the growing season and Summer the dry season. When using the supervised classification method to determine the differences, the results showed remarkable changes. Where h

... Show More
Publication Date
Tue Apr 02 2019
Journal Name
Artificial Intelligence Research
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder
...Show More Authors

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Fri Mar 15 2019
Journal Name
Journal Of Baghdad College Of Dentistry
Assessment of caries experience, enamel defects and selected salivary biomarkers in children with nutritional rickets
...Show More Authors

Background: Nutritional Rickets is a condition produced by an absence of Vitamin D, calcium or phosphate. It clues to relaxing and fading of the bones. Dental expression of children with rickets contains enamel hypoplasia and delayed tooth eruption. This study was conducted in order to assess caries experience (dmfs) and enamel defects among study and control groups, and to evaluate and compare the levels of selected salivary biomarkers between children with nutritional rickets and apparently healthy children. Material and methods: Assessment of caries according to WHO in 1987, and assessment of enamel defects according to enamel defect index EDI of WHO in 1997. In addition a stimulated saliva samples were collected according to Palone e

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Fri Mar 15 2019
Journal Name
Journal Of The College Of Education For Women
Exploring the Effectiveness of two Scales for Measuring Cultural Intelligence of the Preparatory School Students
...Show More Authors

The present study aims at exploring tow cultural intelligence scales of preparatory school students. It also aims at finding out the statistically significant differences according to gender and specification. Accordingly, the present study seeks to answer the following questions:

  1. Is there cultural intelligence of the preparatory school students?
  2. Is there any statistically significant differences according to gender and specification variables?
  3. Is there a scale more effective than cultural intelligence scales?

The stratified random sampling method is used to for selecting the sample of (216) students of scientific and humanistic specifications from

... Show More
View Publication Preview PDF
Publication Date
Sat Jun 15 2019
Journal Name
Journal Of Baghdad College Of Dentistry
Perineural Invasion in Oral Squamous Cell Carcinoma in Relation to Tumor Depth
...Show More Authors

Background: The American Joint committee on Cancer in their 8th edition staging manual regarded perineural invasion as one of the most important prognostic factors for Lip and Oral Cavity Squamous Cell Carcinoma, it also incorporated tumor depth of invasion in defining tumor size category in the new staging system. This study was conducted to evaluate the frequency of perineural invasion in oral squamous cell carcinoma and the effect of approaching tumor depth in this process. Materials and Methods: fifty-four formalin fixed paraffin embedded tissue blocks of radical resections of Oral Squamous Cell Carcinoma were cut and stained with Hematoxylin and Eosin stain, then evaluated for perineural invasion, with estimation of tumor depth of i

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
Using Fuzzy Clustering to Detect the Tumor Area in Stomach Medical Images
...Show More Authors

Although the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of t

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
Analyzing the behavior of different classification algorithms in diabetes prediction
...Show More Authors

<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Mon Dec 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between some of linear classification models with practical application
...Show More Authors

Linear discriminant analysis and logistic regression are the most widely used in multivariate statistical methods for analysis of data with categorical outcome variables .Both of them are appropriate for the development of linear  classification models .linear discriminant analysis has been that the data of explanatory variables must be distributed multivariate normal distribution. While logistic regression no assumptions on the distribution of the explanatory data. Hence ,It is assumed that logistic regression is the more flexible and more robust method in case of violations of these assumptions.

In this paper we have been focus for the comparison between three forms for classification data belongs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 10 2016
Journal Name
British Journal Of Applied Science &amp; Technology
The Effect of Classification Methods on Facial Emotion Recognition ‎Accuracy
...Show More Authors

The interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm

... Show More
View Publication Preview PDF
Crossref (2)
Crossref