Burnishing improves fatigue strength, surface hardness and decrease surface roughness of metal because this process transforms tensile residual stresses into compressive residual stresses. Roller burnishing tool is used in the present work on low carbon steel (AISI 1008) specimens. In this work, different experiments were used to study the influence of feed parameter and speed parameter in burnishing process on fatigue strength, surface roughness and surface hardness of low carbon steel (AISI 1008) specimens. The first parameter used is feed values which were (0.6, 0.8, and 1) mm at constant speed (370) rpm, while the second parameter used is speed at values (540, 800 and 1200) rpm and at constant feed (1) mm. The results of the fatigue test showed that improvement in fatigue limit, where the highest fatigue limit was obtained at (1mm feed, 1200rpm speed) in burnishing process which was (169 Mpa). The hardness results, showed increasing feed and speed values lead to increasing the hardness. The burnishing process reduces surface roughness by producing accurate and better surface finish. The best surface fineness of metal at (1mm feed and 1200 rpm speed) was 0.11 μm.
The galvanic corrosion of the (Cu - Fe), (Cu - Zn) and (Fe - Zn) couples have been investigated in 3.5% NaCl solution, 40ºC, different velocities (Re = 5000, 10000 and 15000) and different area ratio’s of cathode to anode (AR= 0.5,1 and 2), by using commercial metal pipe (cylindrical tube).The Zero Resistance Ammeter has been used to measure the galvanic current (Ig) and galvanic potential (Eg) with time. The galvanic current density increases with increasing velocity (Re) and the area ratio (AR). The galvanic potential (Eg) is shifted to less negative with increasing velocity (Re) and the area ratio (AR). A statistical relations for the galvanic current density and galvanic potential as a function of (Re). and the area ratio had been
... Show MoreThe effect of the magnetic abrasive finishing (MAF) method on the temperature rise (TR), and material removal rate (MRR) has been investigated in this paper. Sixteen runs were to determine the optimum temperature in the contact area (between the abrasive powder and surface of workpiece) and the MRR according to Taguchi orthogonal array (OA). Four variable technological parameters (cutting speed, finishing time, working gap, and the current in the inductor) with four levels for each parameter were used, the matrix is known as a L16 (44) OA. The signal to noise ratio (S/N) ratio and analysis of the variance (ANOVA) were utilized to analyze the results using (MINITAB17) to find the optimum condition and identify the significant p
... Show MoreThe aim of this investigation is to evaluate the experimental and numerical effectiveness of a new kind of composite column by using Glass Fiber‐Reinforced Polymer (GFRP) I‐section as well as steel I‐section in comparison to the typical reinforced concrete one. The experimental part included testing six composite columns categorized into two groups according to the slenderness ratio and tested under concentric axial load. Each group contains three specimens with the same dimensions and length, while different cross‐section configurations were used. Columns with reinforced concrete cross‐section (reference column), encased GFRP I‐section, and encased steel I‐section were adopted in each
To enhance the structural performance of concrete-filled steel tube (CFST) columns, various strengthening techniques have been proposed, including the use of internal steel stiffeners, external wrapping with carbon fiber-reinforced polymer (CFRP) sheets, and embedded steel elements. However, the behavior of concrete-filled stainless-steel tube (CFSST) columns remains insufficiently explored. This study numerically investigates the axial performance of square CFSST columns internally strengthened with embedded I-section steel profiles under biaxial eccentric loading. Finite element (FE) simulations were conducted using ABAQUS v. 6.2, and the developed models were validated against experimental results from the literature. A comprehen
... Show MoreIn this study, six square reinforced concrete flat plates with dimensions of (1500×1500×100) mm were tested under a concentrated load applied on a column located at the center of the slabs. One of these slabs was the control specimen, whereas, in the others, steel angles (steel collars) were used, fixed at the connection region between the slab and the column to investigate the effect of the presence of these collars on punching shear strength. Five thicknesses were used (4, 5, 6, 8, 10mm) with constant legs of angles (75×75) mm of the steel collars to investigate the effects on the punching shear resistance with respect to the control slab. The results of the experimental study show that the punching shear resistance increased b
... Show MoreOptimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni
... Show More