Preferred Language
Articles
/
alkej-64
Surface Roughness Prediction for Steel 304 In Edm Using Response Graph Modeling
...Show More Authors

Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on the surface roughness in the present research. 27 samples were run by using CNC-EDM machine which used for cutting steel 304 with dielectric solution of gas oil by supplied DC current values (10, 20, and 30A). Voltage of (140V) uses to cut 1.7mm thickness of the steel and use the copper electrode. The result from this work is useful to be implemented in industry to reduce the time and cost of Ra prediction. It is observed from response table and response graph that the applied current and pulse on time have the most influence parameters of surface roughness while pulse off time has less influence parameter on it. The supreme and least surface roughness, which is achieved from all the 27 experiments is (4.02 and 2.12µm), respectively. The qualitative assessment reveals that the surface roughness increases as the applied current and pulse on time increases

Crossref
View Publication
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Deep Learning Techniques in the Cancer-Related Medical Domain: A Transfer Deep Learning Ensemble Model for Lung Cancer Prediction
...Show More Authors

Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Tue Mar 20 2018
Journal Name
Day 2 Wed, March 21, 2018
Numerical Approach for the Prediction of Formation and Hydraulic Fracture Properties Considering Elliptical Flow Regime in Tight Gas Reservoirs
...Show More Authors
Abstract<p>As tight gas reservoirs (TGRs) become more significant to the future of the gas industry, investigation into the best methods for the evaluation of field performance is critical. While hydraulic fractured well in TRGs are proven to be most viable options for economic recovery of gas, the interpretation of pressure transient or well test data from hydraulic fractured well in TGRs for the accurate estimation of important reservoirs and fracture properties (e.g. fracture length, fracture conductivity, skin and reservoir permeability) is rather very complex and difficult because of the existence of multiple flow profiles/regimes. The flow regimes are complex in TGRs due to the large hydraulic fractures n</p> ... Show More
View Publication
Scopus (12)
Crossref (7)
Scopus Crossref
Publication Date
Mon Oct 23 2023
Journal Name
Journal Of Optics
Single mode optical fiber sensor based on surface plasmon resonance for the detection of the oil aging for the electrical transformers
...Show More Authors

This work presents a novel technique for the detection of oil aging in electrical transformers using a single mode optical fiber sensor based on surface plasmon resonance (SPR). The aging of insulating oil is a critical issue in the maintenance and performance of electrical transformers, as it can lead to reduce insulation properties, increase risk of electrical breakdown, and decrease operational lifespan. Many parameters are calculated in this study in order to examine the efficiency of this sensor like sensitivity (S), signal to noise ratio (SNR), resolution (refractive index unit) and figure of merit (FOM) and the values are for figure of merit is 11.05, the signal to noise ratio is 20.3, the sensitivity is 6.63, and the resolution is 3

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Jun 08 1998
Journal Name
Journal Of King Saud University
Moment Capacity and Strength of Reinforced Concrete Members Using Stress- Strain Diagrams of Concrete and Steel
...Show More Authors

Publication Date
Fri Sep 30 2011
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Experimental Study on Carbon Steel Corrosion and its Inhibition Using Sodium Benzoate Under Different Operating Conditions
...Show More Authors

Corrosion experiments were carried out to investigate the effect of several operating parameters on the corrosion rate and corrosion potential of carbon steel in turbulent flow conditions in the absence and presence of sodium benzoate inhibitor using electrochemical polarization technique. These parameters were rotational velocity (0 - 1.57 m/s), temperature (30oC – 50oC), and time. The effect of these parameters on the corrosion rate and inhibition efficiency were investigated and discussed. It was found that the corrosion rate represented by limiting current increases considerably with increasing velocity and temperature and that it decreased with time due to the formation of corrosion product layer. The corrosion potential shifted t

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 01 2017
Journal Name
Neural Computing And Applications
The potential of nonparametric model in foundation bearing capacity prediction
...Show More Authors

View Publication
Scopus (12)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
Analyzing the behavior of different classification algorithms in diabetes prediction
...Show More Authors

<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Reviews In Agricultural Science
Technological Advances in Soil Penetration Resistance Measurement and Prediction Algorithms
...Show More Authors

Soil compaction is one of the most harmful elements affecting soil structure, limiting plant growth and agricultural productivity. It is crucial to assess the degree of soil penetration resistance to discover solutions to the harmful consequences of compaction. In order to obtain the appropriate value, using soil cone penetration requires time and labor-intensive measurements. Currently, satellite technologies, electronic measurement control systems, and computer software help to measure soil penetration resistance quickly and easily within the precision agriculture applications approach. The quantitative relationships between soil properties and the factors affecting their diversity contribute to digital soil mapping. Digital soil maps use

... Show More
View Publication
Scopus (7)
Crossref (7)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Journal Of Engineering And Applied Sciences
MODELING THE TRANSPORT OF CONTAMINANT BY WASHING PROCESS IN THE SANDY SOIL
...Show More Authors

The aim of this study is modeling the transport of industrial wastewater in sandy soil by using finite element method. A washing technique was used to remove the industrial wastewater from the soil. The washing technique applied with an efficient hydraulic gradient to help in transport of contaminant mass by advection. Also, the mass transport equation used in modeling the transport of industrial wastewater from soil includes the sorption and chemical reactions. The sandy soil samples obtained from Al-Najaf Governorate/Iraq. The wastewater contaminant was obtained from Al- Musyiebelectricity power plant. The soil samples were synthetically contaminated with four percentages of 10, 20, 30 and 40% of the contaminant and these percentages calc

... Show More
Publication Date
Sun Sep 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Polyvinyl Alcohol – Sodium Nitrite Water Soluble Composite as a Corrosion Inhibitor for Mild Steel in Simulated Cooling Water
...Show More Authors

The inhibitive action of polyvinyl alcohol –sodium nitrite (PVASN) composite on the corrosion of mild steel in simulated cooling water (SCW) has been investigated by weight loss and potentiodynamic polarization. The effect of composite concentration (PVA/SN) , pH, and exposure time on corrosion rate of mild steel were verified using 2 levels factorial design and surface response analysis through weight loss approach, while the electrochemical measurements were used to study the behavior of mild steel in (SCW) with pH between 6 and 8 and in absence and presence of (PVA) in solution containing different concentration of NaNO2. It was verified that all three main variables studied were statistically significant while their interaction is

... Show More
View Publication Preview PDF