Preferred Language
Articles
/
alkej-64
Surface Roughness Prediction for Steel 304 In Edm Using Response Graph Modeling
...Show More Authors

Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on the surface roughness in the present research. 27 samples were run by using CNC-EDM machine which used for cutting steel 304 with dielectric solution of gas oil by supplied DC current values (10, 20, and 30A). Voltage of (140V) uses to cut 1.7mm thickness of the steel and use the copper electrode. The result from this work is useful to be implemented in industry to reduce the time and cost of Ra prediction. It is observed from response table and response graph that the applied current and pulse on time have the most influence parameters of surface roughness while pulse off time has less influence parameter on it. The supreme and least surface roughness, which is achieved from all the 27 experiments is (4.02 and 2.12µm), respectively. The qualitative assessment reveals that the surface roughness increases as the applied current and pulse on time increases

Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Modeling and analysis of thermal contrast based on LST algorithm for Baghdad city
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Comparative Study of Performance and Emission Characteristics between Spark Ignition Engine and Homogeneous Charge Compression Ignition Engine (HCCI)
...Show More Authors

Many researchers consider Homogeneous Charge Compression Ignition (HCCI) engine mode as a promising alternative to combustion in Spark Ignition and Compression Ignition Engines. The HCCI engine runs on lean mixtures of fuel and air, and the combustion is produced from the fuel autoignition instead of ignited by a spark. This combustion mode was investigated in this paper. A variable compression ratio, spark ignition engine type TD110 was used in the experiments. The tested fuel was Iraqi conventional gasoline (ON=82).

The results showed that HCCI engine can run in very lean equivalence ratios. The brake specific fuel consumption was reduced about 28% compared with a spark ignition engine. The experimental tests showed that the em

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study of the Effect of Fuel Type on the Emitted Emissions from SIE at Idle Period
...Show More Authors

The present study investigated the impact of fuel kind on the emitted emissions at the idling period. Three types of available fuels in Iraq were tested. The tests conducted on ordinary gasoline with an octane number of 82, premium gasoline with an octane number of 92, and M20 (consist of 20% methanol and 80% regular gasoline). The 2 liters Mercedes-Benz engine was used in the experiments.

The results showed that engine operation at idle speed emits high levels of CO, CO2, HC, NOx and noise. The produced emission levels depend highly on fuel type. The premium gasoline (ON=92) represents the lower emissions level except for noise at all idling speed. Adding methanol to ordinary gasoline (ON=82) showed high levels of emi

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Assessing Service Quality using Data Envelopment analysis Case study at the Iraqi Middle East Investment Bank
...Show More Authors

The use of data envelopment analysis method helps to improve the performance of organizations in order to exploit their resources efficiently in order to improve the service quality. represented study a problem in need of the Iraqi Middle East Investment Bank to assess the performance of bank branches, according to the service quality provided, Thus, the importance of the study is to contribute using a scientific and systematic method by applying  the data envelopment analysis method in assessing the service quality provided by the bank branches, The study focused on achieving the goal of determining the efficiency of the  services quality provided by the bank branches manner which reflect the extent of utilization of a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Iraqi Journal Of Physics
Monitoring Land Surface Temperature (LST) and Land Cover of Basra Province using Remote Sensing Technique and GIS
...Show More Authors

This study investigates the changes occurring in the province of Basra using geospatial methods and analyzes the variations in land surface temperature among the various types of land cover. For the months of July and December in the years 2013 and 2021, Landsat images were used in Landsat 8 OLI/TIRS, and satellite images were processed using ArcGIS 10.8 software. The study's categories for land use and land cover were generated through the application of supervised classification techniques, and the land surface temperature was calculated using data from a satellite sensor's brightness temperature. According to the study's findings, there has been an increase in urban areas (including barren land). From 2013 to 2021, a greater correlati

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
Analyzing the behavior of different classification algorithms in diabetes prediction
...Show More Authors

<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the c

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Mar 01 2017
Journal Name
Neural Computing And Applications
The potential of nonparametric model in foundation bearing capacity prediction
...Show More Authors

View Publication
Scopus (12)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Reviews In Agricultural Science
Technological Advances in Soil Penetration Resistance Measurement and Prediction Algorithms
...Show More Authors

Soil compaction is one of the most harmful elements affecting soil structure, limiting plant growth and agricultural productivity. It is crucial to assess the degree of soil penetration resistance to discover solutions to the harmful consequences of compaction. In order to obtain the appropriate value, using soil cone penetration requires time and labor-intensive measurements. Currently, satellite technologies, electronic measurement control systems, and computer software help to measure soil penetration resistance quickly and easily within the precision agriculture applications approach. The quantitative relationships between soil properties and the factors affecting their diversity contribute to digital soil mapping. Digital soil maps use

... Show More
View Publication
Scopus (9)
Crossref (9)
Scopus Crossref
Publication Date
Tue Mar 20 2018
Journal Name
Day 2 Wed, March 21, 2018
Numerical Approach for the Prediction of Formation and Hydraulic Fracture Properties Considering Elliptical Flow Regime in Tight Gas Reservoirs
...Show More Authors
Abstract<p>As tight gas reservoirs (TGRs) become more significant to the future of the gas industry, investigation into the best methods for the evaluation of field performance is critical. While hydraulic fractured well in TRGs are proven to be most viable options for economic recovery of gas, the interpretation of pressure transient or well test data from hydraulic fractured well in TGRs for the accurate estimation of important reservoirs and fracture properties (e.g. fracture length, fracture conductivity, skin and reservoir permeability) is rather very complex and difficult because of the existence of multiple flow profiles/regimes. The flow regimes are complex in TGRs due to the large hydraulic fractures n</p> ... Show More
View Publication
Scopus (14)
Crossref (8)
Scopus Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Deep Learning Techniques in the Cancer-Related Medical Domain: A Transfer Deep Learning Ensemble Model for Lung Cancer Prediction
...Show More Authors

Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (7)
Scopus Crossref