Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on the surface roughness in the present research. 27 samples were run by using CNC-EDM machine which used for cutting steel 304 with dielectric solution of gas oil by supplied DC current values (10, 20, and 30A). Voltage of (140V) uses to cut 1.7mm thickness of the steel and use the copper electrode. The result from this work is useful to be implemented in industry to reduce the time and cost of Ra prediction. It is observed from response table and response graph that the applied current and pulse on time have the most influence parameters of surface roughness while pulse off time has less influence parameter on it. The supreme and least surface roughness, which is achieved from all the 27 experiments is (4.02 and 2.12µm), respectively. The qualitative assessment reveals that the surface roughness increases as the applied current and pulse on time increases
The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreIn this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi
... Show MoreLet be a non-trivial simple graph. A dominating set in a graph is a set of vertices such that every vertex not in the set is adjacent to at least one vertex in the set. A subset is a minimum neighborhood dominating set if is a dominating set and if for every holds. The minimum cardinality of the minimum neighborhood dominating set of a graph is called as minimum neighborhood dominating number and it is denoted by . A minimum neighborhood dominating set is a dominating set where the intersection of the neighborhoods of all vertices in the set is as small as possible, (i.e., ). The minimum neighborhood dominating number, denoted by , is the minimum cardinality of a minimum neighborhood dominating set. In other words, it is the
... Show MoreMachine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims
... Show MoreCancer is in general not a result of an abnormality of a single gene but a consequence of changes in many genes, it is therefore of great importance to understand the roles of different oncogenic and tumor suppressor pathways in tumorigenesis. In recent years, there have been many computational models developed to study the genetic alterations of different pathways in the evolutionary process of cancer. However, most of the methods are knowledge-based enrichment analyses and inflexible to analyze user-defined pathways or gene sets. In this paper, we develop a nonparametric and data-driven approach to testing for the dynamic changes of pathways over the cancer progression. Our method is based on an expansion and refinement of the pathway bei
... Show MoreTitanium alloys are broadly used in the medical and aerospace sectors. However, they are categorized within the hard-to-machine alloys ascribed to their higher chemical reactivity and lower thermal conductivity. This aim of this research was to study the impact of the dry-end-milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. This research aims to study the impact of the dry-end milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. Also, it seeks to develop a new hybrid neural model based on the training back propagation neural network (BPNN) with swarm optimization-gravitation search hybrid algorithms (PSO-GS
Background. “Polyetheretherketone (PEEK)” is a biocompatible, high-strength polymer that is well-suited for use in dental applications due to its unique properties. However, achieving good adhesion between PEEK and hydrophilic materials such as dental adhesives or cement can be challenging. Also, this hydrophobicity may affect the use of PEEK as an implant material. Surface treatment or conditioning is often necessary to improve surface properties. The piranha solution is the treatment of choice to be explored for this purpose. Methods. PEEK disks of 10 mm diameter and 2 mm thickness were used in this study. Those samples were divided into five groups (each group has five samples). The first is the control group, in which no
... Show MoreFiber‐reinforced elastic laminated composites are extensively used in several domains owing to their high specific stiffness and strength and low specific density. Several studies were performed to ascertain the factors that affect the composite plates’ dynamic properties. This study aims to derive a mathematical model for the dynamic response of the processed composite material in the form of an annular circular shape made of polyester/E‐glass composite. The mathematical model was developed based on modified classical annular circular plate theory under dynamic loading, and all its formulas were solved using MATLAB 2023. The mathematical model was also verified with real experimental work involving the vibration test of the f
... Show MoreTotal dissolved solids are at the top of the parameters list of water quality that requires investigations for planning and management, especially for irrigation and drinking purposes. If the quality of water is sufficiently predictable, then appropriate management is possible. In the current study, Multiple Linear Regression (MLR) and Artificial Neural Network (ANN) models were used as indicators of water quality and for the prediction of Total Dissolved Solids (TDS) along the Tigris River, in Baghdad city. To build these models five water parameters were selected from the intakes of four water treatment plants on the Tigris River, for the period between 2013 and 2017. The selected water parameters were Total Dissolved Solids (TDS
... Show More