This research was carried out to study the effect of plants on the wetted area for two soil types in Iraq and predict an equation to determine the wetted radius and depth for two different soil types cultivated with different types of plants, the wetting patterns for the soils were predicted at every thirty minute for a total irrigation time equal to 3 hr. Five defferent discharges of emitter and five initial volumetric soil moisture contents were used ranged between field capacity and wilting point were utilized to simulate the wetting patterns. The simulation of the water flow from a single point emitter was completed by utilized HYDRUS-2D/3D software, version 2.05. Two methods were used in developing equations to predict the domains of the wetting pattern. The principal strategy manages each soil independently and includes plotting, fitting, and communicating relevant connections for wetted zone and profundity, maximum error did not exceed 31.2%, modeling efficiency did not less 0.95, and root mean square error did not surpass 1.43 cm. The second strategy additionally treated each soil independently yet used electronic programming that uses different relapse methods for wetted territory and profundity, the maximum error did not exceed 15.64 %, modeling efficiency did not less 0.98, and root mean square error did not surpass 1.18 cm. a field test was directed to quantify the wetted radius to check the outcome acquired by the software HYDRUS-2D, contrast the estimation and the reproduced by the software. The after effects of the conditions to express the wetted radius and depth regarding the time of water system, producer release, and initial soil moisture content were general and can be utilized with great precision.
The Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one
High-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,
... Show MoreThis work predicts the effect of thermal load distribution in polymer melt inside a mold and a die during injection and extrusion processes respectively on the structure properties of final product. Transient thermal and structure models of solidification process for polycarbonate polymer melt in a steel mold and die are studied in this research. Thermal solution obtained according to solidify the melt from 300 to 30Cand Biot number of 16 and 112 respectively for the mold and from 300 to 30 Cand Biot number of 16 for die. Thermal conductivity, and shear and Young Modulus of polycarbonate are temperature depending. Bonded contact between the polycarbonate and the steel surfaces is suggested to transfer the thermal load. The temperat
... Show MoreCement-based adhesive (CBA) is used as a bonding agent in Carbon Fibre Reinforced Polymer (CFRP) applications as an alternative to epoxy-based adhesive due to the drawbacks of the epoxy system under severe service conditions which negatively affect the bond between the CFRP and strengthened elements. This paper reports the results of, an investigation carried out to develop two types of CBA using magnetized water (MW) for mixing and curing. Two magnetic devices (MD-I and MD-II), with different magnetic field strengths (9000 and 6000 Gauss) respectively, were employed for water magnetization. Different water flows with different water circulation times in the magnetizer were used for each device. Compressive and splitting tensile strength te
... Show MoreIraq suffers from lack of water resources supply because the headwaters of the rivers located outside its borders and the influence of upstream countries on the quantities of flowing water, in addition to the increase of pressure on available water as a result of population increase and not adopting the principle of rationalization where misuse and wastage and lack of strategic vision to treat and manage water use in accordance with the economic implications fall. This is reflected fallout on water security and subsequently on national and food security, while the issue of using water resources is development top priority in different countries in the world because of the importance of water effect on the security of indivi
... Show MoreGas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t
ABSTRACT In dam construction stages when an earth embankment has retained a reservoir with constant water surface elevation for a long time, seepage conditions within the embankment will be reach a steady state. If it is necessary to drain the reservoir quickly, the pore-water pressures in the embankment may remain relatively high while the stabling effect of the reservoir's weight along the upstream (U/S) side for the embankment has removed. This process is referring to as "Rapid Drawdown" and may be cause instability in the upstream (U/S) face of the embankment. Kongele dam is one of the proposed earth dams to be implement within the current plan in Iraq. The authors study pore water pressure and the effect of rapid drawdown for the dam d
... Show MoreThis study is about awareness of teaching explanation difficulties in the Islamic university from the lecturers point of view. It discussed the difficulties and the traditional teaching methods of explanation. The study concentrated on teaching Islamic studies in general and teaching explanation in specific and set difficulties so as to be treated.
The study is of three chapters, the first contains the difficulties in several aspects like the educational goals, text contents, teaching methods and styles, students, educational techniques, educational aids and evaluation, it addition to the lecturers of Islamic university colleges in 2009-2
... Show MoreCatalytic wet air oxidation of aqueous phenol solution was studied in a pilot plant trickle bed reactor using copper
oxide catalyst supported on alumina and silica. Catalysts were prepared by impregnating method. Effect of feed solution
pH (5.9, 7.3, and 9.2), gas flow rate (20%, 50%, 80%, and 100%), WHSV (1, 2, and 3 h-1), temperature (120°C, 140°C,
and 160°C), oxygen partial pressure (6, 9, 12 bar), and initial phenol concentration (1, 2, and 4 g/l).Generally, the
performance of the catalysts was better when the pH of feed solution was increased. The catalysts deactivation is related
to the dissolution of the metal oxides from the catalyst surface due to the acidic conditions. Phenol oxidation reaction
was strongly
Catalytic wet air oxidation of aqueous phenol solution was studied in a pilot plant trickle bed reactor using copperoxide catalyst supported on alumina and silica. Catalysts were prepared by impregnating method. Effect of feed solutionpH (5.9, 7.3, and 9.2), gas flow rate (20%, 50%, 80%, and 100%), WHSV (1, 2, and 3 h-1), temperature (120°C, 140°C,and 160°C), oxygen partial pressure (6, 9, 12 bar), and initial phenol concentration (1, 2, and 4 g/l).Generally, theperformance of the catalysts was better when the pH of feed solution was increased. The catalysts deactivation is relatedto the dissolution of the metal oxides from the catalyst surface due to the acidic conditions. Phenol oxidation reactionwas strongly affected by WHSV,
... Show More