For a given loading, the stiffness of a plate or shell structure can be increased significantly by the addition of ribs or stiffeners. Hitherto, the optimization techniques are mainly on the sizing of the ribs. The more important issue of identifying the optimum location of the ribs has received little attention. In this investigation, finite element analysis has been achieved for the determination of the optimum locations of the ribs for a given set of design constraints. In the conclusion, the author underlines the optimum positions of the ribs or stiffeners which give the best results.
In this research, analytical study for simulating a Fabry-Perot bistable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonide (InSb). An optimization procedure using reflective (~85%) InSb etalon (~50µm) thick is described. For this etalon with a (50 µm) spot diameter beam, the minimum switching power is (~0.078 mW) and switching time is (~150 ns), leading to a switching energy of (~11.77 pJ) for this device. Also, the main role played by the temperature to change the etalon characteristic from nonlinear to linear dynamics.
This research is devoted to investigating the thermal buckling analysis behaviour of laminated composite plates subjected to uniform and non-uniform temperature fields by applying an analytical model based on a refined plate theory (RPT) with five unknown independent variables. The theory accounts for the parabolic distribution of the transverse shear strains through the plate thickness and satisfies the zero-traction boundary condition on the surface without using shear correction factors; hence a shear correction factor is not required. The governing differential equations and associated boundary conditions are derived by using the virtual work principle and solved via Navier-type analytical procedure to obtain critica
... Show MoreNumerical study of separation control on symmetrical airfoil, four digits (NACA
0012) by using rotating cylinder with double steps on its upper surface based on the computation of Reynolds-average Navier- Stokes equations was carried out to find the optimum configuration of unconventional airfoil for best aerodynamics performance. A model based on collocated Finite Volume Method was developed to solve the governing equations on a body-fitted coordinate system. A revised (k-w) model was proposed as a known turbulence model. This model was adapted to simulate the control effects of rotating cylinder. Numerical solutions were performed for flow around unconventional airfoil with cylinder to main stream velocities ratio in the range
... Show MoreDue to the large population of motorway users in the country of Iraq, various approaches have been adopted to manage queues such as implementation of traffic lights, avoidance of illegal parking, amongst others. However, defaulters are recorded daily, hence the need to develop a mean of identifying these defaulters and bring them to book. This article discusses the development of an approach of recognizing Iraqi licence plates such that defaulters of queue management systems are identified. Multiple agencies worldwide have quickly and widely adopted the recognition of a vehicle license plate technology to expand their ability in investigative and security matters. License plate helps detect the vehicle's information automatically ra
... Show MoreThe aerodynamic characteristics of the forward swept wing aircraft have been studied theoretically and an experimentally investigation for the wake field generated by this configuration have been carried out. Low order panel method with the Dirichlet boundary condition have been used to solve the case of the steady, inviscid and compressible flow. Two different panel method techniques have been employed: the source-doublet and the doublet method. The thickness for the various components was considered in the study. Prandtl-Glauert similarity rule has been used to account for the compressibility effects. Experimentally, a model was manufactured from wood with body length (290mm) and main wing span was (204mm). The primary objective of th
... Show MoreTo decrease the dependency of producing high octane number gasoline on the catalytic processes in petroleum refineries and to increase the gasoline pool, the effect of adding a suggested formula of composite blending octane number enhancer to motor gasoline composed of a mixture of oxygenated materials (ethanol and ether) and aromatic materials (toluene and xylene) was investigated by design of experiments made by Mini Tab 15 statistical software. The original gasoline before addition of the octane number blending enhancer has a value of (79) research octane number (RON). The design of experiments which study the optimum volumetric percentages of the four variables, ethanol, toluene, and ether and xylene materials leads
... Show MoreSolar energy is the most abundant renewable energy source. This energy can be converted directly into electricity using solar panels. The fixed tilt solar panels are the most practical and the most widely installed throughout the world. Optimum tilt angle calculation has the advantage that it does not use expensive solar trackers. This research calculates the seasonal optimum tilt angle of solar panels for 17 cities in Iraq and 83 cities in 83 countries distributed around the world. Solar Panel Angle Calculator program was used in calculating the optimum tilt angles from vertical. The optimum tilt angle varies between 6° and 112° throughout the year. This angle for winter, spring/ autumn and summer seasons are found to be between
... Show MoreThe best optimum temperature for the isolate was 30○C while the pH for the maximum mineral removal was 6. The best primary mineral removal was 100mg/L, while the maximum removal for all minerals was obtained after 8 hrs, and the maximum removal efficiency was obtained after 24 hrs. The results have proved that the best aeration for maximum removal was obtained at rotation speed of 150 rpm/ minute. Inoculums of 5ml/ 100ml which contained 106 cell/ ml showed maximum removal for the isolate.
The simulation have been made for 3D flow structure and heat transfer with and without
longitudinal riblet upstream of leading edge vane endwall junction of first stage nozzle guide vane .The research explores concept of weakening the secondary flows and reducing their harmful effects.Numerical investigation involved examination of the secondary flows ,velocity and heat transfer rates by solving the governing equations (continuity, Navier -stokes and energy equations ) using the known package FLUENT version (12.1).The governing equations were solved for three dimentional, turbulent flowe, incompressible with an appropriate turbulent model (k-ω,SST) .The numerical solution was carried out for 25 mode
... Show More