The steady state laminar mixed convection and radiation through inclined rectangular duct with an interior circular tube is investigated numerically for a thermally and hydrodynamicaly fully developed flow. The two heat transfer mechanisms of convection and radiation are treated independently and simultaneously. The governing equations which used are continuity, momentum and energy equations. These equations are normalized and solved using the Vorticity-Stream function and the Body Fitted Coordinates (B.F.C) methods. The finite difference approach with the Line Successive Over-Relaxation (LSOR) method is used to obtain all the computational results. The (B.F.C) method is used to generate the grid of the problem. A computer program (Fortran 90) is built to calculate the steady state Nusselt number (Nu) for Aspect Ratio AR (0.55-1) and Geometry Ratio GR (0.1-0.9). The fluid Prandtl number is 0.7, Rayleigh number Ra = 400, Reynolds number Re = 100, Optical Thickness (0 ≤ t ≤ 10), Conduction- Radiation parameter (0 ≤ N ≤ 100) and Inclination angle λ = 45. For the range of parameters considered, results show that radiation enhance heat transfer. It is also indicated in the results that heat transfer from the surface of the circle exceeds that of the rectangular duct. Generally, Nu is increased with increasing GR, t and N but it decreased with AR increase. When the radiation effect added to the heat transfer mechanism, the heat transfer rate increased. This effect increased with increasing in GR and decreasing with AR. The increasing in radiation properties lead to increase the radiation effect. Tecplot 7 program was used to plot the curves which cleared these relations and isotherms and streamlines which illustrate the behavior of air through the channel and its variation with other parameters. A correlation equation is concluded to describe the radiation effect. Comparison of the results with the previous work shows a good agreement.
Two Schiff bases, namely, 3-(benzylidene amino) -2-thioxo-6-methyl 2,5-dihydropyrimidine-4(3H)-one (LS])and 3-(benzylidene amino)-6-methyl pyrimidine 4(3H, 5H)-dione(LA)as chelating ligands), were used to prepare some complexes of Cr(III), La(III), and Ce(III)] ions. Standard physico-chemical procedures including metal analysis M%, element microanalysis (C.H.N.S) , magnetic susceptibility, conductometric measurements, FT-IR and UV-visible Spectra were used to identify Metal (III) complexes and Schiff bases (LS) and (LA). According to findings, a [Cr(III) complex] showed six coordinated octahedral geometry, while [La(III), and Ce(III) complexes]were structured with coordination number seven. Schiff's bases a
... Show MoreAbstract
Objectives: To find out the association between enhancing learning needs and demographic characteristic of (gender, education level and age).
Methods: This study was conducted on purposive sample was selected to obtain representative and accurate data consisting of (90) patients who are in a peroid of recovering from myocardial infarction at Missan Center for Cardiac Diseases and Surgery, (10) patients were excluded for the pilot study, Data were analyzed using descriptive statistical data analysis approach of frequency, percentage, and analysis of variance (ANOVA).
Results: The study finding shows, there was sign
... Show MoreInfrared photoconductive detectors working in the far-infrared region and room temperature were fabricated. The detectors were fabricated using three types of carbon nanotubes (CNTs); MWCNTs, COOH-MWCNTs, and short-MWCNTs. The carbon nontubes suspension is deposited by dip coating and drop–casting techniques to prepare thin films of CNTs. These films were deposited on porous silicon (PSi) substrates of n-type Si. The I-V characteristics and the figures of merit of the fabricated detectors were measured at a forward bias voltage of 3 and 5 volts as well as at dark and under illumination by IR radiation from a CO2 laser of 10.6 μm wavelengths and power of 2.2 W. The responsivity and figures of merit of the photoconductive detector
... Show MoreGlassy carbon electrode (GCE) was modified with carbon nanotubes CNT and C60 by attachment and solution evaporation techniques, respectively. CNT/Li+/GCE and C60/Li+/GCE were prepared by modifying CNT/GCE and C60/GCE in Li+ solution via cyclic voltammetry (CV) potential cycling. The sensing characteristics of the modified film electrodes, demonstrated in this study for interference of Mn2+ in different heavy metals ion esp. Hg2+, Cd2+ and Cu2+. The interfering effect was investigated that exert positive interference on the redox peaks of Mn2+. The modification of GCE with nano materials and Li+ act an enhancement for the redox current peaks to observe the effect of interference for Mn2+ in 1:1 ratio with different heavy metals ion.
Autorías: Muwafaq Obayes Khudhair, Sanaa Rabeea Abed, Hayder Talib Jasim. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 1, 2023. Artículo de Revista en Dialnet.
Nowadays, most of the on-chip plasmonic single-photon sources emit an unpolarized stream of single photons that demand a subsequent polarizer stage in a practical quantum cryptography system. In this paper, we numerically demonstrated the coupling of the light emitted from a quantum emitter (QE) at 700 nm wavelength to the propagation mode supported by an on-chip hybrid plasmonic waveguide (HPW) polarization rotator. Our results proved that the light emitted is linearly polarized at 0º, 45º/−45º, and 90º with propagation lengths of 5 μm, 3.3 μm, and 3.9 μm, respectively. Moreover, high power-conversion efficiency was obtained from an applied transverse magnetic (TM) mode (0º-polarization) to a transverse electric (TE) (90º-polari
... Show More