The present work presents design and implementation of an automated two-axis solar tracking system using local materials with minimum cost, light weight and reliable structure. The tracking system consists of two parts, mechanical units (fixed and moving parts) and control units (four LDR sensors and Arduino UNO microcontroller to control two DC servomotors). The tracking system was fitted and assembled together with a parabolic trough solar concentrator (PTSC) system to move it according to information come from the sensors so as to keep the PTSC always perpendicular to sun rays. The experimental tests have been done on the PTSC system to investigate its thermal performance in two cases, with tracking system (case 1) and without tracking system (case 2). The experimental results showed that the average solar radiation falling on the PTSC prototype in the two cases during the same time was 854 and 701 watt/m2, respectively, which means an increase in the solar radiation about 21.8 % when using tracking system. It was found that the average useful heat gain output of solar collector was equal to (376.2, 252.6 watt) for the two cases, respectively, so there was an increase of about 48.9 % when using the tracking system. Also, the average thermal efficiency of the PTSC was found to be (20.7, 26.5 %) for the two cases, respectively, which means an increase in the average efficiency by 28% with use of tracking system compared to the fixed case.
Copper selenide (Cu2Se) thin films were prepared by thermal evaporation at RT with thickness 500 nm. The heat-treating for (400 &500) K for the absorber layer has been investigated. This research includes, studying the structural properties of X-ray diffraction (XRD) that show the Cu2Se thin film (Cubic) and has a polycrystalline orientation prevalent (220). Moreover, studying the effect of annealing on their surface morphology properties by using Atomic Force Microscopy AFM. Optical properties were considered using the transmittance and absorbance spectra had been recorded when wavelength range (400 - 1000) nm in order to study the absorption coefficient and energy gap. It was found that these films had allowed direct transitio
... Show MoreOver the past few decades, the surveying fieldworks were usually carried out based on classical positioning methods for establishing horizontal and vertical geodetic networks. However, these conventional positioning techniques have many drawbacks such as time-consuming, too costly, and require massive effort. Thus, the Global Navigation Satellite System (GNSS) has been invented to fulfill the quickness, increase the accuracy, and overcome all the difficulties inherent in almost every surveying fieldwork. This research assesses the accuracy of local geodetic networks using different Global Navigation Satellite System (GNSS) techniques, such as Static, Precise Point Positioning, Post Processing Kinematic, Session method, a
... Show MoreIn the modern world, wind turbine (WT) has become the largest source of renewable energy. The horizontal-axis wind turbine (HAWT) has higher efficiency than the vertical-axis wind turbine (VAWT). The blade pitch angle (BPA) of WT is controlled to increase output power generation over the rated wind speed. This paper proposes an accurate controller for BPA in a 500-kw HAWT. Three types of controllers have been applied and compared to find the best controller: PID controller (PIDC), fuzzy logic type-2 controller (T2FLC), and hybrid type-2 fuzzy-PID controller (T2FPIDC). This paper has been used Mamdani and Sugeno fuzzy inference systems (FIS) to find the best inference system for WT controllers. Furthermore, genetic algorithm (GA) and particl
... Show MoreBackground: Early detection of subclinical left ventricular (LV) systolic dysfunction is crucial and could influence patients' prognosis by aiding the clinician to candidate patients for better management.
Objective: To detect early LV systolic dysfunction in asymptomatic patient with chronic aortic regurgitation by two dimensional speckle tracking echocardiography.
Methods: Sixty one asymptomatic patients with chronic aortic regurgitation, with no ischemic heart diseases (by coronary angiography) or conductive heart diseases, no diabetes mellitus, no hypertension, and no other valvular heart diseases (group 1) and fifty age and sex-matched healthy subjects (
... Show MoreFuture generations of wireless networks are expected to heavily rely on unmanned aerial vehicles (UAVs). UAV networks have extraordinary features like high mobility, frequent topology change, tolerance to link failure, and extending the coverage area by adding external UAVs. UAV network provides several advantages for civilian, commercial, search and rescue applications. A realistic mobility model must be used to assess the dependability and effectiveness of UAV protocols and algorithms. In this research paper, the performance of the Gauss Markov (GM) and Random Waypoint (RWP) mobility models in multi-UAV networks for a search and rescue scenario is analyzed and evaluated. Additionally, the two mobility models GM and RWP are descr
... Show MoreAbstract
Zigbee is considered to be one of the wireless sensor networks (WSNs) designed for short-range communications applications. It follows IEEE 802.15.4 specifications that aim to design networks with lowest cost and power consuming in addition to the minimum possible data rate. In this paper, a transmitter Zigbee system is designed based on PHY layer specifications of this standard. The modulation technique applied in this design is the offset quadrature phase shift keying (OQPSK) with half sine pulse-shaping for achieving a minimum possible amount of phase transitions. In addition, the applied spreading technique is direct sequence spread spectrum (DSSS) technique, which has
... Show MoreTwo Prototypes of Transversely Excited at atmospheric pressure (TEA) Nitrogen laser systems (One Stage Blumlein Circuit and Two Stage Blumlein Circuit) were fabricated and operated. High voltage power supply with variable operating voltage (0-20 kv) and operating current (1-3A) was built and tested successfully. The gas flow rate of 15 L/ min and 10 L/ min for OSBC and TSBC was used. The performance of the fabricated systems was studied extensively reaching to the optimum operating conditions. The obtained laser output energy for the first system has linear relationship with the applied voltage. The maximum output energy was about (1.14 mJ) with (10.40) ns pulse duration and the half-wave divergence angle was about (0.1455 m rad). In the
... Show More