Preferred Language
Articles
/
alkej-3
Microcontroller – Based Spectrum Analyzer
...Show More Authors

This work includes design, implementation and testing of a microcontroller – based spectrum analyzer system. Both hardware and software structures are built to verify the main functions that are required by such system. Their design utilizes the permissible and available tools to achieve the main functions of the system in such a way to be modularly permitting any adaptation for a specific changing in the application environment. The analysis technique, mainly, depends on the Fourier analysis based methods of spectral analysis with the necessary required preconditioning processes. The software required for waveform analysis has been prepared. The spectrum of the waveform has been displayed, and the instrument accuracy has been checked. The basic hardware parts of the analyzer are the processor and the associated logic, storage media, communication to a central master computer and the data acquisition parts. However, the input / output structure is modular and may change according to the application requirements. The basic operating software modules, which are independent of an application, may be used as a part of a software package that can carryout other functions. A complete software development tools package to develop application programs, using IBM-PC and the analyzer instrument, are installed and realized at levels, the PC level and the analyzer instrument level.

 

 

View Publication
Publication Date
Thu Oct 01 2020
Journal Name
Bulletin Of Electrical Engineering And Informatics
Lightweight hamming product code based multiple bit error correction coding scheme using shared resources for on chip interconnects
...Show More Authors

In this paper, we present multiple bit error correction coding scheme based on extended Hamming product code combined with type II HARQ using shared resources for on chip interconnect. The shared resources reduce the hardware complexity of the encoder and decoder compared to the existing three stages iterative decoding method for on chip interconnects. The proposed method of decoding achieves 20% and 28% reduction in area and power consumption respectively, with only small increase in decoder delay compared to the existing three stage iterative decoding scheme for multiple bit error correction. The proposed code also achieves excellent improvement in residual flit error rate and up to 58% of total power consumption compared to the other err

... Show More
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Sun Oct 15 2017
Journal Name
Research Journal Of Applied Sciences, Engineering And Technology
Optimization of IPv6 Protocol Independent Multicast-Sparse Mode Multicast Routing Protocol based on Greedy Rendezvous Point Selection Algorithm
...Show More Authors

View Publication
Crossref
Publication Date
Tue Aug 27 2024
Journal Name
Tem Journal
Preparing the Electrical Signal Data of the Heart by Performing Segmentation Based on the Neural Network U-Net
...Show More Authors

Research on the automated extraction of essential data from an electrocardiography (ECG) recording has been a significant topic for a long time. The main focus of digital processing processes is to measure fiducial points that determine the beginning and end of the P, QRS, and T waves based on their waveform properties. The presence of unavoidable noise during ECG data collection and inherent physiological differences among individuals make it challenging to accurately identify these reference points, resulting in suboptimal performance. This is done through several primary stages that rely on the idea of preliminary processing of the ECG electrical signal through a set of steps (preparing raw data and converting them into files tha

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Thu Mar 31 2022
Journal Name
Iraqi Geological Journal
Development of New Models to Determine the Rheological Parameters of Water-Based Drilling Fluid using Artificial Neural Networks
...Show More Authors

It is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological

... Show More
Crossref
Publication Date
Fri Sep 01 2023
Journal Name
International Journal Of Biological Macromolecules
Optimization and characterization of carrageenan/gelatin-based nanogel containing ginger essential oil enriched electrospun ethyl cellulose/casein nanofibers
...Show More Authors

View Publication
Scopus (30)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Sliding mode control based on high-order extended state observer for flexible joint robot under time-varying disturbance
...Show More Authors

Abstract. In this paper, a high order extended state observer (HOESO) based a sliding mode control (SMC) is proposed for a flexible joint robot (FJR) system in the presence of time varying external disturbance. A composite controller is integrated the merits of both HOESO and SMC to enhance the tracking performance of FJR system under the time varying and fast lumped disturbance. First, the HOESO estimator is constructed based on only one measured state to precisely estimate unknown system states and lumped disturbance with its high order derivatives in the FJR system. Second, the SMC scheme is designed based on such accurate estimations to govern the nominal FJR system by well compensating the estimation errors in the states and the lumped

... Show More
View Publication
Scopus (6)
Crossref (3)
Scopus Crossref
Publication Date
Wed Dec 22 2021
Journal Name
Antibiotics
Classic vs. Novel Antibacterial Approaches for Eradicating Dental Biofilm as Adjunct to Periodontal Debridement: An Evidence-Based Overview
...Show More Authors

Periodontitis is a multifactorial chronic inflammatory disease that affects tooth-supporting soft/hard tissues of the dentition. The dental plaque biofilm is considered as a primary etiological factor in susceptible patients; however, other factors contribute to progression, such as diabetes and smoking. Current management utilizes mechanical biofilm removal as the gold standard of treatment. Antibacterial agents might be indicated in certain conditions as an adjunct to this mechanical approach. However, in view of the growing concern about bacterial resistance, alternative approaches have been investigated. Currently, a range of antimicrobial agents and protocols have been used in clinical management, but these remain largely non-v

... Show More
View Publication Preview PDF
Crossref (23)
Crossref
Publication Date
Mon Apr 01 2024
Journal Name
Journal Of Environmental Chemical Engineering
A critical review describes wastewater photocatalytic detoxification over Bi5O7I-based heterojunction photocatalysts: Characterizations, mechanism insight, and DFT calculations
...Show More Authors

View Publication
Scopus (47)
Crossref (46)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Applied Surface Science
Sol-gel derived ITO-based bi-layer and tri-layer thin film coatings for organic solar cells applications
...Show More Authors

View Publication
Scopus (23)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Tue Apr 02 2019
Journal Name
Artificial Intelligence Research
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder
...Show More Authors

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an

... Show More
View Publication
Crossref (2)
Crossref