This work is concerned with a two stages four beds adsorption chiller utilizing activated carbon-methanol adsorption pair that operates on six separated processes. The four beds that act as thermal compressors are powered by a low grade thermal energy in the form of hot water at a temperature range of 65 to 83 °C. As well as, the water pumps and control cycle consume insignificant electrical power. This adsorption chiller consists of three water cycles. The first water cycle is the driven hot water cycle. The second cycle is the cold water cycle to cool the carbon, which adsorbs the methanol. Finally, the chilled water cycle that is used to overcome the building load. The theoretical results showed that average cycle cooling power is 2.15kW, while the experimental measurement revealed that the cooling capacity of the cycle is about 1.98 kW with a relative error of % 0.02. The generator and condensing temperatures are 83 and 30 °C, respectively. The coefficient of performance (COP) of that chiller was in the range of 0.37 to 0.49. The best operating point and the best working conditions were also investigated. The present chiller is superior more than the single stage, two beds adsorption chiller that works on the activated carbon methanol pair that needs a high ambient temperature.
Bored piles settlement behavior under vertical loaded is the main factor that affects the design requirements of single or group of piles in soft soils. The estimation of bored pile settlement is a complicated problem because it depends upon many factors which may include ground conditions, validation of bored pile design method through testing and validation of theoretical or numerical prediction of the settlement value. In this study, a prototype single and bored pile group model of arrangement (1*1, 1*2 and 2*2) for total length to diameter ratios (L/D) is 13.33 and clear spacing three times of diameter, subjected to vertical axial loads. The bored piles model used for the test was 2000
... Show MoreThe Study was achieved adjectives physical and chemical water wells in the district of
Samarra , where a study has 42 sample groundwater in different regions of the judiciary
randomly distributed all over the judiciary and examined in vitro.
The study showed that the quality of groundwater in the general area of study
Kipritateh punctuated Klordih water quality and other quality Bicarboonatih.
Varied the key components of groundwater in the study area in concentrations
between periods of rain and drought, especially because of the cation ion exchange processes
as well as mitigation as a result of filtering rain water and dominated the calcium ion,
followed by sodium.
As for the negative ions has dominated ion s
In this study, stabilization of expansive soils using waste materials namely; Cement Kiln Dust (CKD), and waste plastic bottles (WPB) was experimentally investigated. Using CKD and WPB are exponentially increasing day by day, due to their capability to solve both environmental and geotechnical problems successfully. Expansive soils were collected from locations with a wide range of plasticity index (PI) (15 - 27) and liquid limit (LL) (35% - 64%). Stabilizer percentages were varied from 0% to 20%, and curing durations for CKD cases were 7 and 28 days. Results showed the best percentages of CKD and WPB are 12% of each one respectively. LL, plastic limit (PL), and swelling percent (SP) loss were observed, which are 46%, 55%, and 96% respec
... Show MoreIn this paper, construction microwaves induced plasma jet(MIPJ) system. This system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate by using flow meter, to diagnose microwave plasma optical emission spectroscopy(OES) was used to measure the important plasma parameters such as electron temperature (Te), residence time (Rt), plasma frequency (?pe), collisional skin depth (?), plasma conductivity (?dc), Debye length(?D). Also, the density of the plasma electron is calculated with the use of Stark broadened profiles
This investigation aimed to explain the mechanism of MFCA by applying this method on air-cooled engine factory which was suffering from high production cost. The results of this study revealed that MFCA is a useful tool to identify losses and inefficiencies of the production process. It is found that the factory is suffering from high losses due to material energy and system losses. In conclusion, it is calculated that system losses are the highest among all the losses due to inefficient use of available production capacity.
The risk assessment for three pipelines belonging to the Basra Oil Company (X1, X2, X3), to develop an appropriate risk mitigation plan for each pipeline to address all high risks. Corrosion risks were assessed using a 5 * 5 matrix. Now, the risk assessment for X1 showed that the POF for internal corrosion is 5, which means that its risk is high due to salinity and the presence of CO, H2S and POF for external corrosion is 1 less than the corrosion, while for Flowline X2 the probability of internal corrosion is 4 and external is 4 because there is no Cathodic protection applied due to CO2, H2S and Flowline X3 have 8 leaks due to internal corrosion so the hazard rating was very high 5 and could be due to salinity, CO2, fluid flow rate
... Show MoreThe current research aims to diagnose the role of social responsibility as a contributing factor in enhancing the quality of services provided by the public sector in Iraq, where the research sought to demonstrate the relationship and impact of social responsibility dimensions (economic, legal, moral, and human) on the sector Services related to the electric field in Nineveh governorate because of its importance and its direct relationship with the citizen especially after the end of military operations in the destruction of the electricity sector by a large percentage in the city of Mosul. Nineveh Electricity Distribution Directorate / Center was chosen as a research community including (administrators and staff) of the research
... Show MoreIn this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these
... Show MoreIn this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these measurement
... Show MoreIncreased downscaling of CMOS circuits with respect to feature size and threshold voltage has a result of dramatically increasing in leakage current. So, leakage power reduction is an important design issue for active and standby modes as long as the technology scaling increased. In this paper, a simultaneous active and standby energy optimization methodology is proposed for 22 nm sub-threshold CMOS circuits. In the first phase, we investigate the dual threshold voltage design for active energy per cycle minimization. A slack based genetic algorithm is proposed to find the optimal reverse body bias assignment to set of noncritical paths gates to ensure low active energy per cycle with the maximum allowable frequency at the optimal supply vo
... Show More