The inverse kinematic equation for a robot is very important to the control robot’s motion and position. The solving of this equation is complex for the rigid robot due to the dependency of this equation on the joint configuration and structure of robot link. In light robot arms, where the flexibility exists, the solving of this problem is more complicated than the rigid link robot because the deformation variables (elongation and bending) are present in the forward kinematic equation. The finding of an inverse kinematic equation needs to obtain the relation between the joint angles and both of the end-effector position and deformations variables. In this work, a neural network has been proposed to solve the problem of inverse kinematic equation. To feed the neural network, experimental data were taken from an elastic robot arm for training the network, these data presented by joint angles, deformation variables and end-effector positions. The results of network training showed a good fit between the output results of the neural network and the targets data. In addition, this method for finding the inverse of kinematic equation proved its effectiveness and validation when applying the results of neural network practically in the robot’s operating software for controlling the real light robot’s position.
Recently, the financial mathematics has been emerged to interpret and predict the underlying mechanism that generates an incident of concern. A system of differential equations can reveal a dynamical development of financial mechanism across time. Multivariate wiener process represents the stochastic term in a system of stochastic differential equations (SDE). The standard wiener process follows a Markov chain, and hence it is a martingale (kind of Markov chain), which is a good integrator. Though, the fractional Wiener process does not follow a Markov chain, hence it is not a good integrator. This problem will produce an Arbitrage (non-equilibrium in the market) in the predicted series. It is undesired property that leads to erroneous conc
... Show MoreThis paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In ord
... Show MoreThe purpose of this research is to implement the orthogonal polynomials associated with operational matrices to get the approximate solutions for solving two-dimensional elliptic partial differential equations (E-PDEs) with mixed boundary conditions. The orthogonal polynomials are based on the Standard polynomial (
In this paper we use non-polynomial spline functions to develop numerical methods to approximate the solution of 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of these method, and to compare the computed results with other known methods.
ABSTRACT Background: According to Branemark’s protocol, the waiting period between tooth extraction and implant placement is 6–8 months; this is the late placement technique. Achieving and maintaining implant stability are prerequisites for a dental implant to be successful. Resonance Frequency Analysis (RFA) is a noninvasive diagnostic method that measures implant stability. The aim of this study was to investigate the influence of treatment protocol and implant dimensions on primary implant stability utilizing RFA. Materials and methods: This study included 63 Iraqi patients (37 male, 26 female; ranging 22-66 years). According to treatment protocol, the sample was divided into 2 groups; A (delayed) & B (immediate). Dental im
... Show MoreThe consumption of fossil fuels has caused many challenges, including environmental and climate damage, global warming, and rising energy costs, which has prompted seeking to substitute other alternative sources. The current study explored the microwave pyrolysis of Albizia branches to assess its potential to produce all forms of fuel (solid, liquid, gas), time savings, and effective thermal heat transfer. The impact of the critical parameters on the quantity and quality of the biofuel generation, including time, power levels, biomass weight, and particle size, were investigated. The results revealed that the best bio-oil production was 76% at a power level of 450 W and 20 g of biomass. Additionally, low power levels led to enhanced
... Show MoreBackground: despite the rise in the incidence of renal cell carcinoma attributed to availability of medical imaging, a considerable decline in mortality is an association. Morbidity-wise, the shift from radical nephrectomy to partial nephrectomy is the trend for now. Multiple scoring systems have been introduced over the past decades to help surgeons choose between radical and partial nephrectomy. One commonly used system is the RENAL nephrometry score that was first introduced by Kutikov and Uzzo in 2009.
Objective: to evaluate the role of RENAL nephrometry scoring system in predicting the surgical technique to use to resect renal masses and associated perioperative outcomes.
... Show More